

# Pump Systems Optimisation Expert Level Training

#### (Egypt Edition – version 8 December 2021)

Presented by: Albert Williams & Siraj Williams











# Acknowledgements

- UNIDO, Vienna
- US DOE
- Oak Ridge National Laboratory
- Dr G Hovstadius
- Harry Rosen
- Barry Platt
- Siraj Williams
- Albert Williams







# **Contents of this Course**



- 1. Systems Approach
- 2. Efficiency & Process Demands
- **3.** Pump System Fluid Relationships
- 4. System Curves
- **5.** Pump Performance Curves
- 6. Pump System Energy Use
- 7. ASME EA-2 Standard & Guidance Document

- 8. ASME Chapter 6 Analysing the Data
- 9. ASME Chapter 7 Reporting & Documentation
- **10.** Case Studies
- **11.** MEASUR Software
- **12.** Specific Energy
- **13.** Pre-screening
- 14. Reliability & Maintenance
- 15. Motors
- 16. Control Methods
- 17. Collect Data & Field Measurements



Agenda: Day 1



| PSO Expert Day 1 |                                           |  |
|------------------|-------------------------------------------|--|
| TIME             | DESCRIPTION                               |  |
| 09:00 - 09:30    | Welcome and registration                  |  |
| 09:30 - 11:15    | Introductions                             |  |
|                  | 1. Systems Approach                       |  |
|                  | 2. Efficiency & Process Demands           |  |
| 11:15 – 11:45    | TEA                                       |  |
| 11:45 – 13:45    | 3. Pump System Fluid Relationships        |  |
|                  | 4. System Curves                          |  |
|                  |                                           |  |
| 13:45 – 14:45    | LUNCH                                     |  |
| 14:45 – 16:45    | 5. Pump Performance Curves                |  |
|                  | 6. Pump System Energy Use                 |  |
|                  | 7. ASME EA-2 Standard & Guidance Document |  |
|                  |                                           |  |
| 16:45 - 17:00    | SUMMARY OF DAY 1                          |  |
|                  |                                           |  |





| PSO Expert Day 2 |                                             |  |
|------------------|---------------------------------------------|--|
| TIME             | DESCRIPTION                                 |  |
| 09:30 - 11:15    | 8. ASME Chapter 6 Analysing the Data        |  |
|                  | 9. ASME Chapter 7 Reporting & Documentation |  |
|                  | 10. Case Studies                            |  |
|                  |                                             |  |
| 11:15 – 11:45    | TEA                                         |  |
| 11:45 – 13:45    | 11. MEASUR Software                         |  |
| 13:45 – 14:45    | LUNCH                                       |  |
| 14:45 – 16:45    | 12. Specific Energy                         |  |
|                  | 13. Pre-screening                           |  |
|                  | 14. Reliability & Maintenance               |  |
|                  |                                             |  |
| 16:45 - 17:00    | SUMMARY OF DAY 2                            |  |









| PSO Expert Day 3 |                                                                         |  |
|------------------|-------------------------------------------------------------------------|--|
| TIME             | DESCRIPTION                                                             |  |
| 09:30 – 11:15    | Preparation for site visit                                              |  |
|                  | Discussion of WTS-8 pump system processes                               |  |
| 11:15 – 11:45    | TEA                                                                     |  |
| 11:45 – 13:45    | Site walkthrough (Hot transfer pumps group 1, Filter feedpumps group 2) |  |
|                  | Site walkthrough (Hot transfer pumps group 2, Filter feedpumps group 1) |  |
|                  |                                                                         |  |
| 13:45 – 14:45    | LUNCH                                                                   |  |
| 14:45 – 17:00    | Metering installations                                                  |  |
|                  |                                                                         |  |







| PSO Expert Day 4 |                                                                                                                                         |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| TIME             | DESCRIPTION                                                                                                                             |  |
| 09:30 – 11:15    | Discussions and process flows development                                                                                               |  |
| 11:15 – 11:45    | TEA                                                                                                                                     |  |
| 11:45 – 13:45    | Remove equipment, extract data<br>Development of MEASUR basecase models                                                                 |  |
| 13:45 – 14:45    | LUNCH                                                                                                                                   |  |
| 14:45 – 17:00    | Development of basecase MEASUR models (cont'd)<br>Development off pump and system curves<br>Development of proposed cases MEASUR models |  |







| PSO Expert Day 5 |                                                      |  |
|------------------|------------------------------------------------------|--|
| TIME             | DESCRIPTION                                          |  |
| 09:30 – 11:15    | 14. Reliability & Maintenance (cont'd)               |  |
|                  | 15. Motors                                           |  |
| 11:15 – 11:45    | TEA                                                  |  |
| 11:45 – 13:45    | 16. Control Methods                                  |  |
|                  | 17. Collect Data & Field Measurements                |  |
| 13:45 - 14:45    | LUNCH                                                |  |
| 14:45 – 16:45    | Development of proposed cases MEASUR models (cont'd) |  |
|                  | EEM Recommendations Business Case Development        |  |
|                  |                                                      |  |
| 16:45 - 17:00    | COURSE WRAP UP                                       |  |



#### Welcome



- Name
- Organisation
- Energy management experience
- What do you expect to learn over these few days?









#### 1. The Systems Approach

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



### Systems Approach











# 2. Efficiency & Process Demands

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



# Efficiency



#### Standard Efficiency definition = Energy out / Energy in



#### Defining the System









بركيز تجديث الصلاء

# Important Fundamental Relationships









#### Example – Fluid Power



An industrial pumping system delivers water flow of 125 l/s at a total head of 29m.

What is the fluid power required?









#### **Delivered versus Needed?**



# The delivered fluid power is about 2.8 times larger than needed







#### 3. Pump System Fluid Relationships

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams







• Static and dynamic head

Losses and loss coefficients

• System curves



### Two types of Resistance to overcome



# • Static

# • Dynamic



#### **Pressure Resistance from a System**



- It takes **Energy** to lift fluid from one level to another
  - The **Pressure** used to *lift* the fluid is: -
  - The Energy used to *lift* the fluid is:
  - The **Power** to *lift* fluid is:

- <u>Static head</u>
- Independent of velocity
- Linear function of velocity

- It takes **Energy** to move fluid though a system of pipes and other equipment.
  - The **Pressure** used to overcome friction is: <u>Dynamic head</u>
  - The **Pressure** required is: *Proportional to the square of the fluid velocity*
  - The **Power** is: *Proportional to the cube of the velocity*



# Pumping Effort (Output)

- The ability for pumps to move water is based on the energy contained in a mass of water
- Pump output is measured in meters of head. The three common terms used to express this energy in water is:
  - Elevation / Pressure Head (Static Head or H<sub>s</sub>)
  - Velocity Head (H<sub>v</sub>)
  - Head loss due to Frictional Losses (H<sub>f</sub>)

- ightarrow Lift the fluid
- $\rightarrow$  Create kinetic energy
- $\rightarrow$  overcome friction

# Total Head (TH) = $H_s + H_v + H_f$









Velocity head ( $H_v$ ) is the amount of energy required to cause the water to move at a given velocity. This is represented by the following relationship:  $H_v = v^2/2g$  v = Velocity in meters/second g = acceleration due to gravity (9.8 m/sec<sup>2</sup>)

To determine velocity, the following equation can be used:

v = Q/A Q = Flow in m<sup>3</sup>/sec A = the cross sectional Area of the inside of the pipe in m<sup>2</sup>

#### Velocity head is usually below 0.5 m and can often be considered <u>minimal</u> for many water pumping systems



#### Example – Velocity Head



An industrial pumping system delivers a flow of 125 l/s at a head of 29m. If the pipe diameter is 250 mm, what is the velocity head?



#### Head Loss due to Piping Frictional Losses



 Frictional Head loss (H<sub>f</sub>) is the loss of energy due to the friction of the piping materials and is expressed in meters of head. This can be determined theoretically using:

# *The Darcy Weisbach Equation* or *The Hazen-Williams Equation*

• H<sub>f</sub> can be determined more accurately in the field using actual pressure measurements



# **Estimating Pipe Friction Loss**



 This equation is very useful to understand what parameters influence <u>frictiona</u> losses in piping

$$H_{f} = f \times \frac{L}{d} \times \frac{V^{2}}{2g}$$

 $H_{f} = \text{pressure drop due to friction (ft or m)}$  f = Darcy friction factor L = pipe length (ft or m) d = pipe diameter (ft or m) $\frac{v^{2}}{2g} = \text{velocity head (ft or m)}$ 

Equptian program for promoting

#### **Frictional Losses**



# The Friction head loss:

- Is a function of fluid velocity
- Lower flow (lower velocity) results in lower head loss
- Head loss is proportional to the square of velocity v<sup>2</sup>
- Reduced to 25% when velocity is cut by 50%
- Increases by a factor of 4 when velocity is doubled













The static head is made up of elevation, and sometimes pressure components (P<sub>4</sub> - P<sub>1</sub>) +  $Z_4 - Z_1$ Static head (H<sub>s</sub>) = r g  $P_4$  $Z_4 - Z_1$  $\mathbf{H}_{\mathbf{s}}$ is in m  $\mathbf{P}_1$ is in kPa Ρ Ζ is in m  $\left( \mathbf{P}_{3}\right)$ = 9.81 m/s<sup>2</sup>  $\mathbf{P}_2$ g is in kg/m<sup>3</sup> r 1 31 بركير تجديث الص thing a time on daily







#### 4. System Curves

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams







How do we show the pressure or head needed to push flow through a system?

- The answer is with a *System Curve*
- The two types of *Flow* resistance, Static and Dynamic, are added



#### System Head Curve: All Frictional System





# System Head Curve: All Static System










## System Effects: Changes in Static Head



#### The effect on the system head curve when the static head changes







#### The effect on the system head curve when system friction changes





**Two Components of System Curves: Static and Friction or Dynamic Head**  Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY .... POWER TOMORROW



### Loss coefficient (K)



- All fluid movement results in frictional losses.
- The head loss can be estimated using this relationship.
- The K value is called the Loss Coefficient.
- It is multiplied by the velocity head to estimate the frictional head loss of one or more components and/or fittings.



#### Generic loss K's



#### - available from several sources; examples from HI Engineering Data Book



#### Loss coefficient (K)



## This is not like generic medicine; there are huge differences between generic and specific

| Aller of the second of the sec |                              |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|
| Fitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | Range of Variation              |
| 90 Deg. Elbow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regular Screwed              | ± 20 per cent above 2 inch size |
| 92004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Regular Screwed              | ± 40 per cent below 2 inch size |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Long Radius, Screwed         | ± 25 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Regular Flanged              | ± 35 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Long Radius, Flanged         | ± 30 per cent                   |
| 45 Deg. Elbow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regular Screwed              | ±10 per cent                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Long Radius, Flanged         | ±10 per cent                    |
| 180 Deg. Bend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regular Screwed              | ± 25 per cent                   |
| Net Color State Longe To California California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Regular Flanged              | ± 35 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Long Radius, Flanged         | ± 30 per cent                   |
| Tee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Screwed, Line or Branch      | ± 25 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow                         | ± 35 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flanged, Line or Branch Flow |                                 |
| Globe Valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Screwed                      | ± 25 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flanged                      | ± 25 per cent                   |
| Gate Valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Screwed                      | ± 25 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flanged                      | ± 50 per cent                   |
| Check Valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Screwed                      | ± 30 per cent                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flanged                      | + 200 per cent / - 80 per cent  |

Approximate Range of Variation for K









#### 5. Pump Performance Curves

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



#### Nameplate Operating Point



Nameplate data applies to one particular operating point



#### Pump curve shapes vary



Head curves for two pump designs



### Efficiency curves for the two pumps





## Shaft power as a function of flow rate







The intersection between the Pump and System head capacity curves defines the operating point





50

ISO-efficiency lines are frequently overlaid onto head-capacity curves for multiple impeller diameters



#### Typical performance curves for impeller trims









For speed changes, the efficiency lines have a different pattern and all go through zero





## Lets review what happens if we operate a pump with reduced flow rate speed change, and with 3 different system curves



## Change in Speed: All Frictional System



Change in speed for the All Frictional System results in maintenance of constant pump efficiency



#### Change in Speed: Static & Frictional System



#### In a system with static head, pump efficiency *Does Not Remain Fixed* as speed changes



#### Change in Speed: All Static System



#### In a system with ONLY Static Head, the effect is even more dramatic





Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

## Now let's hook a Pump up to a System



57

### **Pump Operating Point**



- The pump will *always* operate where the system and pump curves intersect
- At that point, we have balance between what the system demands and what the pump can deliver.





The intersection between the pump and system head capacity curves defines the operating point







## Which pump to buy?









Egyptian program for promoting ndustrial Motor Efficiency

## **Affinity Laws**



63



#### Pump Affinity Laws can be used to predict pump curves for different Speeds and Impeller Diameters





A rebar quenching centrifugal pump supplies water at 210 m<sup>3</sup>/hr, and the motor electrical load is 25 kW. If the supply was reduced to 150 m<sup>3</sup>/hr what would the new power consumption be expected to be?

- A. 17.85 kW
- B. 12.7kW
- C. 9.1 kW
- D. 7.6 kW





65



A 3-phase motor is driving a centrifugal pump to pump water around a closed circuit. The power demand on the motor is 17.3kW. If we install a VSD to reduce the speed of the motor and the flow of water around the circuit is reduced by 25%, what is the likely reduction in power demand?

- A. 4.33 kW
- B. 7.3 kW
- C. 10 kW
- D. 11.2 kW

18.3 kW = 7.298 kW. Reduction in power demand is 18.3kW - 7.3 kW

 $A = 12.3 \text{ kW}, \text{ new P} = 0.75 \times 0.75 \times$ 



## Affinity Laws Exercise 3 (professional)



A 75kW motor pumping water around a closed circuit is fully loaded. We reduce the speed of the pump using a VSD and the pressure difference across the pump (read by reading the suction and discharge gauges fitted) is seen to reduce to 0.36 of the original pressure difference. What can we say about the new flow rate and the expected power savings (assume motor efficiency is 95% and constant over the range used)

- A. 16.2 kW
- B. 58.8 kW
- C. 61.9 kW
- D. 66.3 kW



New pressure is 0.36 of old pressure. Thus (0.36/1) = (new flow rate 0.6 of the old flow rate.Thus  $kW_{\text{new}}/kW_{\text{old}} = 0.6 \text{ of the old flow rate}.$ Thus  $kW_{\text{new}} = 21.6\% \text{ of the old power consumption}.$ New power consumption = 0.216 x 75/0.95 = 17.05 kW. New power saving is 78.95 – 17.05



A system fed by a pump has a static head of 3m and a friction head of 10m at a flow of 100 m<sup>3</sup>/h. What is the electrical power consumption of the pump system at a flow of 60m<sup>3</sup>/h? The pump is driven directly and at 60 % flow the motor efficiency is 91% and the pump efficiency is 78%.

b) 1.5 kW c) 2.7 kW d) 5.2 kW a) 1.1 kW

> $KM^{G|GC} = 0.77KW_{f} / (91\% \times 78\%) = 1.1 KW_{g}$  $Affinity |aw: (Q_{old}/Q_{new})^3 \times kW_{old} = kW_{new} = 0.77kW_{fluid}$  $kM^{\text{fluid}} = QHD / 102 = (27.77 \times 13 \times 1) / 102 = 3.54 kM^{\text{fluid}}$  $sd_{1}/(7) = Ju/_{c} u 00T$

## **Considerations for Affinity Laws**



- It's fine to use the affinity laws to explore the possibilities with impeller trimming for better pump and system matching, but don't get carried away. Get **actual** performance curves from the manufacturer, especially if the trim change being considered is large.
- The affinity laws will generally *not tell you* where on the curve the pump will operate or give you correct estimates of possible energy savings, *except for systems without static head*





# Parallel and Series pumping "laws", like the pump affinity laws apply to the *pump curves only*

- Parallel pumps Sum the Flow rates at a given head
- Series pumps Sum the Heads at a given flow rate







Parallel pumps can help adapt to changing system requirements and provide redundancy





Egyptian program for promoting ndustrial Motor Efficiency

## How about Parallel pump operation with different System types?












Effect of wear on pumps in parallel One pump will dominate the other





Egyptian program for promoting mustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# Pumps in Parallel Ethanol Plant Example



## Reboiler Pumps #1 and #2





= 1 023 400 kWh @ EGP1.00/kWh = EGP 1 023 400/ year



## Reboiler Pumps #1 and #2



CDS 4261-2 Operating two pumps GOULDS PUMPS CENTRIFUGAL PUMP CHARACTERISTICS **RPM 890** instead of one only m Model: 3180/3181/3185/3186 Pattern: 68086 150 increases flow by 6% in 40 22.5x21.88 Actual Head 32m this case, *but increases* 130 120 21 system annual energy - 35 costs by EGP 1 023 400 100 20.5x18 30 90 Two 25 80 19.13x16.81ir 70 Pumps 20 60 Efficiency point of Enl One 15 25hb 40 (100hp) each pump when 2 Pump 30 are running 20 Flow increase w/ 2<sup>nd</sup> 10 pump: ~ 20 l/s 2000 4000 6000 D UUUU gpm m³/hr 500 1000 1500 2000 2500 3000 3500



Egyptian program for promoting moustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# **Pumps in Series**



#### Pumps in Series



Identical pumps in series Add Head at a given flow rate to estimate overall performance







#### Two identical pumps in series with system curve







#### 6. Pump System Energy Use

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



#### Power Used by a Pump





Motor Operating Cost = Motor input power x Operating hours x per unit electricity cost



### Expanding the equation...









مركبة تحديث الصناعية STRIAL MOBERNISATION CENTRI

84







#### 2 OPERATING CONDITIONS : PRODUCT A & PRODUCT B







**7. ASME EA-2-2009** Energy Assessment Standard for Pumping Systems

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



### ASME Standards & Guides



Egyptian program for promoting +ndustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW







## Standard vs Guide



#### Standard EA-2-2009

- Provides a common understanding of what should be included in a pump system assessment to replace the lack of a standardization for pump systems previously evaluated as part of an energy evaluation, audit, survey or energy study.
- Defines specific requirements that must be performed for different assessment levels.

#### *Guidance Document EA-2G-2010*

- Provides technical background and application details to help the user apply the standard.
- Includes rational for the technical requirements, application notes, alternative approaches, tips, techniques and examples.



#### Objectives of Pump Standard/Guidance Documents



- Provide a step by step approach to perform a pump system energy assessment.
- Identify energy assessment levels and the effort required for each type of assessment.
- Emphasize the importance of taking a systems approach.
- Review equipment data that should be collected for pump system evaluations.
- Become familiar with solutions for pump system optimization.
- Present the results in a suitable format.



#### Standard/Guidance Document Sections

ASME EA-2-2009 Energy Assessment Pump Systems Sections:

- 1. Scope & Introduction
- 2. Definitions
- 3. References
- 4. Organizing the Assessment
- 5. Conducting the Assessment
- 6. Analyzing the Data
- 7. Reporting & Documentation



Areas to be

discussed

Egyptian program for promoting ndustrial Motor Efficiencu







#### 8. ASME Chapter 6 Analysing the data

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams





#### 6. Analysis from the Data of the Assessment

- 6.1 Common Causes and Remedies for Excessive Energy Use
  - 6.1.1 Reduce System Head
  - 6.1.2 Reduce System Flow Rate
  - 6.1.3 Ensuring that Components Operate Close to BEP
  - 6.1.4 Change Pumping System Run Time
- 6.2 Basic Energy Reduction Opportunity Calculations
  6.2.1 Comparing Existing and Optimal Energy Use
  6.2.2 Excess System Energy Use



## Solutions to Excessive Energy Use



- Remove / reduce unnecessary throttling
- Clean fouled or partially blocked components
- Isolate unnecessary flow paths
- Replace old or corroded piping
- Up-size piping
- Reduce number of valves and fittings
- Increase suction tank level



## Solutions to Excessive Energy Use



## Reduce System Flow Rate:

- Maintain appropriate heat exchange differential temperatures by reducing cooling water flow.
- Isolate unnecessary flow paths.
- Extend batch process fill and drain times.
- Turn off/reduce flow when not needed.



#### Measured versus Required H-Q





96

## The excessive power(s) delivered





Egyptian program for promoting mustrial Motor Efficiency

OWER TOMORROW





9. ASME Chapter 7 Reporting and Documentation

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams





## 7. Reporting and Documentation

#### 7.1 Introduction

#### 7.2 Report Contents

- 7.2.1 Executive Summary and Project Summary Table
- 7.2.2 General Facility Information
- 7.2.3 Assessment Goals & Scope
- 7.2.4 Description of Systems
- 7.2.5 Data Collection Methods
- 7.2.6 Data Analysis
- 7.2.7 Energy Baseline
- 7.2.8 Savings Opportunities Identified
- 7.2.9 Implementation Recommendations
- 7.2.10 Appendices





#### **7. Reporting and Documentation:**

- 7.3 Provision for Third Party Review
- 7.4 Review of Final Report by Assessment Team Members



## **Executive Summary**



- Summary of existing energy use
- Presentation of identified energy saving projects with annual kWh savings, cost savings, estimated project cost, SPB, NPV, IRR, CO<sub>2eq</sub> savings. Projects typically presented as:
  - Implement Immediately (Low cost)
  - Longer Term (Full assessment required)
  - Pump vs System savings
- Summarize percent savings and environmental benefits.

Some Typical Examples....



# Summary Chart Example: (EGP0.90/kWh)



|      | Proposed Cost saving Measures            | Annual Energy<br>Savings (kWh) | First Year<br>Annual (EGP) | Initial Cost<br>(EGP) | Simple<br>Payback<br>(yrs) |
|------|------------------------------------------|--------------------------------|----------------------------|-----------------------|----------------------------|
|      | OPERATIONAL MEASURES                     |                                |                            |                       |                            |
| OM1  | Initiate Efficiency Management Program   |                                |                            |                       |                            |
| OM2  | Install New Flow Meter at Scenic Station |                                |                            | EGP26 000             |                            |
| OM3  | Lochrem Well Speed Adjustment            | 59 953                         | EGP53 957                  |                       |                            |
| OM4  | Tutt Pump Speed Adjustment               | 9 665                          | EGP8 698                   |                       |                            |
| OM5  | Scenic Pump Speed Adjustment             | 48 646                         | EGP43 781                  |                       |                            |
| OM6  | Install Low Temperature Thermostats      |                                |                            |                       |                            |
|      | ENERGY CONSERVATION MEASURES             |                                |                            |                       |                            |
| ECM1 | Airport Well #1 Pump/VSD Replacement     | 58 897                         | EGP53 007                  | EGP400 400            | 7.5                        |
| ECM2 | Airport Well #2 Efficiency Improvements  | 150 650                        | EGP135 585                 | EGP257 400            | 1.9                        |
| ECM3 | Union Street Pump Improvements           | 72 024                         | EGP64 821                  | EGP328 900            | 5.0                        |
|      | ENERGY SUPPLY MEASURES                   |                                |                            |                       |                            |
| ESM1 | Prevent Two Pump Operation at Tutt       |                                | EGP41 522                  |                       |                            |
| ESM2 | Switch Rate Schedules                    |                                | EGP228 605                 |                       |                            |
|      | Electric Energy Cost and Savings         | 399 835                        | EGP629 976                 | EGP1 012 700          | 1.6                        |







gef





#### 1.1.1. Immediate implementation, no cost or low cost

|                                         | SYSTEM SAVINGS |     |                                                                                                                                      |  |  |
|-----------------------------------------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| FOMPSTSTEM                              | R/yr           | %   | OPPORTUNITY                                                                                                                          |  |  |
| Staves Cooling Water<br>Supply Pumps    | R 1632 960     | 50% | All pumps highly throttled, open valves until reach max current.<br>Should be able to run 2 pumps instead of 3 to achieve same flow. |  |  |
| Supply Pump –<br>Scrubbers              | R 876 000      | 13% | Remove and check NRV's in order to reduce friction loss                                                                              |  |  |
| System 5                                | R 815 665      | 40% | Remove and check NRV's, reduce friction loss                                                                                         |  |  |
| Secondary Cooling<br>Water Supply Pumps | R 557 200      | 30% | Remove throttling by opening valves until max current reached.<br>Trim impellers.                                                    |  |  |
| System 4                                | R 551 124      | 20% | Reduce pressure to 9 Bar and 6 Bar by removing throttling                                                                            |  |  |
| Cold Water Pumps                        | R 414 180      | 4%  | Repair NRV and gate valve on pumps 4 and 5                                                                                           |  |  |
| Supply Pumps - Critical<br>User         | R 326 592      | 30% | Check max current for pump and only throttle to required current.<br>Investigate trimming impeller to further reduce throttling      |  |  |
| System 6                                | R 220 450      | 10% | Remove and check NRV's, reduce friction loss                                                                                         |  |  |
| System 8                                | R 218 245      | 15% | Remove and check NRV's, reduce friction loss                                                                                         |  |  |
| Cooling Tower Pumps                     | R 216 295      | 9%  | Repair NRV and gate valves on pump 1 and 2                                                                                           |  |  |
| System 8                                | R 145 500      | 10% | Clean out heat exchangers                                                                                                            |  |  |
| Secondary Cooling<br>Water Supply Pumps | R 130 004      | 7%  | Fix Pump #1 NRV and prevent reverse flow                                                                                             |  |  |
| TOTAL SAVINGS                           | R 6 104 215    | -   |                                                                                                                                      |  |  |









#### 1.1.3. Full assessment required

| DUMDEVETEM       | SYSTEM SAVINGS |                  |                                                                                                                                   |  |  |
|------------------|----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| FUMFSTSTEM       | R/yr           | %                | OPPORTUNITY                                                                                                                       |  |  |
| Compressor       | R 3 810 240    | 2%               | Improve compressor efficiency by lowering cooling water<br>temperature                                                            |  |  |
| Auxilliary Pumps | R 1 208 700    | 35%              | Turn pumps off during idle time. Install additional accumulators to act as buffer, pumps will only start to top-up accumulator    |  |  |
| Servo Pumps      | R 998 100      | 4%               | Turn pumps off during idle time. Install additional accumulators<br>to act as buffer, pumps will only start to top-up accumulator |  |  |
| System 1         | R 771 574      | 10%              | Increase inlet temp to furnace. Run one pump less at least 50% of the time                                                        |  |  |
| System 21        | R 727 484      | 40%              | Remove solids from water, prevent blocking of pump suction,<br>no more clean out of sumps required                                |  |  |
| System 11        | R 396 809      | 15%              | Synchronise both sets of pumps. Investigate leakage.<br>Throttling used to balance flow to filters                                |  |  |
| System 23        | R 303 118      | <mark>25%</mark> | Ideal opportunity for VSD. Match flow to demand                                                                                   |  |  |
| System 3         | R 275 562      | 20%              | Investigate overall efficiency of pumps and cooling towers                                                                        |  |  |
| Backup Pumps     | R 201 398      | 80%              | Use alternate heat source, boiler only operational 20% of time.<br>Reduce pumping by 80%                                          |  |  |
| TOTAL SAVINGS    | R 8 692 985    | -                | -                                                                                                                                 |  |  |

Note: Rand values based on average tariff of 90c / kWh.



### Rank Existing Pump Stations



|            | Site                   | Pump | Installed<br>Power | Annual Wastage<br>(R) | Wastage (%)          | Wear<br>Wastage % | % Wastage -<br>Rank | Annual Wastage (R)<br>- Rank | Wear Wastage %-<br>Rank |
|------------|------------------------|------|--------------------|-----------------------|----------------------|-------------------|---------------------|------------------------------|-------------------------|
| Top 5      | Mrt Dam                | 1    | 676                | R O                   | 0.0%                 |                   | 1                   | 1                            | -                       |
| 100 5      | Mrt Dam                | 2    | 676                | R 203 788             | 20.1%                | <b>5.1%</b>       | 3                   | 3                            | 1                       |
| stations   | Mrt Dam                | 3    | 676                | R 291 390             | <mark>45.3%</mark>   | 34.4%             | 5                   | 3                            | 5                       |
| were       | Groenkloof (High lift) | 1    | 580                | R 1 187 412           | 26.1%                | 34.3%             | 4                   | 5                            | 5                       |
|            | Groenkloof (High lift) | 2    | 580                |                       |                      | 5.7.8             | •                   | -                            | -                       |
| assessed   | Groenkloof (High lift) | 3    | 580                | R 1 028 099           | 22.8%                | 29.4%             | 4                   | 5                            | 4                       |
|            | Wartburg               | 1    | 160                | R 117 652             | 17.8%                | 9.0%              | 3                   | 2                            | 2                       |
|            | Wartburg               | 2    | 160                | R 135 803             | 19.1%                | 16.8%             | 3                   | 2                            | 3                       |
|            | Wartburg               | 3    | 160                | R 115 825             | 17.1%                | 7.2%              | 3                   | 2                            | 1                       |
| D          | Bruynshill             | 1    | 55                 | R 47 211              | 19. <mark>4</mark> % | 14.9%             | 3                   | 1                            | 2                       |
| Pump       | Bruynshill             | 2    | 55                 | R 31 371              | 12.5%                | 6.0%              | 2                   | 1                            | 1                       |
| stations   | Dingle                 | 1    | 75                 | R 43 454              | 16.9%                | 16.1%             | 3                   | 1                            | 3                       |
| raple d by | Dingle                 | 2    | 75                 | R 42 244              | 16.5%                | 15.2%             | 3                   | 1                            | 3                       |
| гапкей бу  | Thornville             | 1    | 45                 | R 92 142              | 34.9%                | 31.4%             | 5                   | 1                            | 5                       |
| wastage    | Thornville             | 2    | 45                 | R 86 865              | 34.3%                | 36.0%             | 5                   | 1                            | 5                       |
| U          | Thornville             | 3    | 45                 | R 93 573              | 35.4%                | 35.2%             | 5                   | 1                            | 5                       |
|            | DV Harris- Backwash    | 1    | 15                 | R 2 181               | 14.0%                | 1.7.1             | 2                   | 1                            | -                       |
|            | DV Harris- Backwash    | 2    | 15                 | R 2 181               | 14.0%                | (+)               | 2                   | 1                            | -                       |
|            | DV Harris- Backwash    | 4    | 15                 | R 2 181               | 14.0%                | 1-2               | 2                   | 1                            | -                       |
|            | DV Harris- Domestic    | 1    | 30                 | R 18 876              | 33.6%                | 1.5%              | 5                   | 1                            | 1                       |













#### 10. Case Studies

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams





Egyptian program for promoting moustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# Waste Water System Example



107

## **General Facility Information**



Egyptian program for promoting ndustrial Motor Efficiency TOMORROW

#### Pump stations feeding a waste water plant

The top 5 stations were assessed

| Electric Acct #        | Location                      | Station Name                          | 2009 Cost |  |
|------------------------|-------------------------------|---------------------------------------|-----------|--|
| 3734550273             | Corner of Old Vernon/Hwy97    | Airport Wells                         | \$60,355  |  |
| 8400427215             | 1595 Glenmore Rd              | Tutt Pump Station                     | \$30,806  |  |
| 8626205671             | 2141 Quail/Lochrem Rd         | Lochrem Well                          | \$25,888  |  |
| 3438735241             | Scenic Rd                     | Scenic Booster Station                | \$19,228  |  |
| 8437034171             | 1850 Union Rd                 | Union Road Booster Station            | \$19,084  |  |
| 8784406113             | Postill Lake                  | 📕 Postill Pump Station                | \$14,120  |  |
| 2028257738             | Country Club Drive            | Quail Pump Station                    | \$13,971  |  |
| 7196445516             | 2052 Dewdney Rd               | OK Lake Pump Station                  | \$10,160  |  |
| <sup>37892</sup> The   | highest energy use s          | tations Ellison Well                  | \$9,181   |  |
| 137025 repr            | esenting 66% of GEID          | 2009 istrano Booster Station          | \$6,285   |  |
| 353290 ener            | rgy costs were review         | ved to :Kinley Pump Station           | \$5,310   |  |
| 639285 eval            | uate potential energy sav     | ings. Intake Screen                   | \$3,904   |  |
| 682957 <del>2327</del> | DVL TIGOT POCCEEWIN           | warach Bstr Pump Station              | \$3,508   |  |
| 8493235872             | 445B Glenmore Rd              | Office                                | \$2,922   |  |
| 4217787985             | 47192 Country Club Drive      | UBCO Reservoir                        | \$2,473   |  |
| 5303004369             | 833 Big Rock Court            | Big Rock Booster Station              | \$2,380   |  |
| 2325753172             | 445A Glenmore Rd              | Shop                                  | \$1,497   |  |
| 3280893061             | McKinley Rd                   | Arthur Court Reservoir & Pump Station | \$1,213   |  |
| 4616000173-4           | 2329 Rojem                    | Bulach Bstr Station Aux               | \$743     |  |
| 5700429059             | 540 Reynolds Rd               | 540 Reynolds Rd Cook Dom Pump Station |           |  |
| 6409641365             | 550 Valley Rd                 | Raisenen Rd PRV                       | \$632     |  |
| 2448745798             | 800 Packinghse Rd             | Scenic Reservoir                      | \$522     |  |
| 3203030962             | 1248 Reynolds Rd              | Cooks Irr Pump Station                | \$451     |  |
| 6081212108             | 2635 Dry Valley Rd            | Dry Valley PRV                        | \$241     |  |
| 4710548990             | 70877 Rifle                   | Rifle Rd Pump Station                 | \$221     |  |
| 5286062985             | 127205 Sexsmith Rd            | Sexsmith Road Well                    | \$194     |  |
| 4366273409             | 1210 University Way / Concass | Vector Well #1                        | \$0       |  |
|                        |                               |                                       | 100 3000  |  |









ركبر تحديث الم


#### **General Facility Information**





#### Distribution of energy usage for pumping within a municipality





Egyptian program for promoting moustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

## Cooling Water System Example



110





- The site has a large integrated cooling water system.
- There are 6 Cooling Tower (CT) sites with multiple cells per site which are interconnected with cooling water supply and return loops.
- Usually 3 pumps per site (2 operating, 1 reserve).
- There are 20 pumps in the cooling water system.
- ± 13 pumps (225 450kW each) are running at any given time to supply the necessary cooling water flows.
- CT 4 has only two 450kW pumps = focus of assessment
- The circulation rate is ± 9 500 l/s



#### Assessment goal and scope



#### Assessment of a cooling system. What to look for:

- Pump and Motor efficiencies
- Regulation methods
- Throttling and/or by-pass losses
- Cooling tower operation
- Cooling needs for served processes
- Supply equals demand?
- Cooling tower operation
- Water levels
- Fans
- Assess the system and suggest improvements





#### During the assessment the following tasks will be performed:

- Review the operation of CT4 water cooling systems
- Estimate energy use
- Perform field measurements of power, pressure and flow to identify sources of energy loss
- Use MEASUR to quantify the opportunity
- Review energy use and pump reliability issues



#### **Data Collection Methods**



- Measurement of pressures and amperage was done on the chosen systems. This was a challenge due to lack of pressure taps, but the plant people were very helpful.
- The PSO expert worked closely with the plant personnel to examine and input the data collected into MEASUR.
- In all cases except one (where pump curves were not available), the results were compared to pump curves and the flow estimated from power and pressure measurements.







### The Pumps at CT4 are running continuously drawing 216.9 kW each



#### Identified Saving Opportunities



#### **Results:**

- Saving opportunity ± EGP 2 600 000 /y at no cost by turning one pump off.
- Net 216.9 kW reduction in cooling water system power consumption (90 A at 2 410 V);
- Overall system pressure not affected
- Throttling valves at other pump stations were adjusted to accommodate for the change



#### Recommendations



#### The proposed and executed change was:

- Shut down one of the 450kW water pumps at CT4
- Increase flow from the other pump at CT4 by opening up the throttling valve
- Assess load increase on the other pumps connected to the plant cooling system





Egyptian program for promoting moustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

## Hot Oil Circulation System Example



#### Installed Hot Oil System for Process Heating















#### 11. MEASUR Software

Manufacturing Energy Assessment Software for Utility Reduction

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams







- Goal: to assist pump users in identifying pumping systems that are the most likely candidates for energy and cost savings
- Requires field measurements or estimates of flow rate, pressure, and motor power or current
- Uses pump and motor performance data from Hydraulic Institute standard ANSI/HI-1.3 and MotorMaster+ to estimate existing, achievable performance





# MEASUR: Can be used both as a Component Tool and as a System Tool

- For a given operating point, MEASUR searches for the highest pump efficiency possible at that point.
- It also searches for the highest motor efficiency available to drive the found pump at that point.
- It calculates the cost of operating at the point in terms of kWh used and \$ saved.
- MEASUR can also be used as a system tool if the minimum flow and pressure needed for the process are entered instead of current head and flow.

https://www.energy.gov/eere/amo/measur



#### MEASUR: Input Fields



| Last modified: Sep 14, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               | System Setup Asse                                               | ssment Diagram Re  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|
| Assessment Settings 2 Pump & Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 Motor                                                                                       | 4 Field Data                                                    |                    |
| SO USER TRAINING 1 SETTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |                                                                 |                    |
| Language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Translate Appl                                                                                | ication Using Google Translate                                  |                    |
| Currency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ - US Dollar                                                                                |                                                                 | ~                  |
| Units of Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Olmperial<br>●Metric<br>OCustom                                                               |                                                                 |                    |
| Head Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Meters (m)                                                                                    |                                                                 | ~                  |
| Flow Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cubic meters                                                                                  | per hour (mª/h)                                                 | ~                  |
| Power Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kilowatts (kW)                                                                                |                                                                 | ~                  |
| Deserve Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KiloDaccala (ki                                                                               | Pa)                                                             |                    |
| Pressure measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kilorascais (Ki                                                                               | u)                                                              |                    |
| Pressue weasurement     Temperature Measurement     PSO Liser Training 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Degrees Celsi                                                                                 | s)<br>is (°C)                                                   | v                  |
| Pressue weasurement Temperature Measurement PSO User Training 1 Last modified: Sep 14, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Degrees Celsi                                                                                 | us (°C)<br>System Setup Ass                                     | sessment Diagram R |
| Pessue weasurement  PSO User Training 1 Last modified: Sep 14, 2021 Assessment Serings 2 Pump & Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ballor ascars (K                                                                              | s; (°C) System Setup Ass Field Data                             | essment Diagram R  |
| Pressue weasurement  POSO User Training 1 Last modified: Sep 14, 2024  Assessment Serings PUMP & FLUID  PUMP & FLUID  Pressue weasurement  Pressue weasurem | Motor                                                                                         | System Setup Ass<br>4 Field Data                                | essment Diagram R  |
| Pressue weasurement<br>Temperature Measurement  PSO User Training 1 Last modified: Sep 14, 2024  Assessment Serings 2 Pump & Fluid  PUMP & FLUID  Pump Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Degrees Celsi<br>Motor<br>End Suction                                                         | s (°C) System Setup Ass field Data                              | essment Diagram R  |
| Pressue weasurement<br>Temperature Measurement  PSO User Training 1 Last modified: Sep 14, 2004  Assessment Serings PUMP & FLUID  Pump Type Pump Type Pump Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Autor ascuts (n     Degrees Celsi     Segrees Celsi     End Suction     1780                  | s (°C) System Setup Ass Field Data ANSI/API                     | essment Diagram R  |
| Pressue weasurement<br>Temperature Measurement<br>PSO User Training 1<br>Last modified: Sep 14, 2004<br>Assessment Serings 2 Pump & Fluid<br>PUMP & FLUID<br>Pump Type<br>Pump Speed<br>Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Autor ascuts (n     Degrees Celsi     Segrees Celsi     End Suction     1780     Direct Drive | s (°C) System Setup Ass Field Data ANSI/API                     | essment Diagram R  |
| Pressue weasurement<br>Temperature Measurement<br>PSO User Training 1<br>Last modified: Sep 14, 2004<br>Assessment Set Ings 2 Pump & Fluid<br>PUMP & FLUID<br>Pump Type<br>Pump Speed<br>Drive<br>Fluid Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | End Suction           1780           Direct Drive           Water                             | System Setup Ass<br>System Setup Ass<br>Field Data<br>DANSI/API | essment Diagram R  |
| Pressue weasurement<br>Temperature Measurement<br>PSO User Training 1<br>Last modified: Sep 14, 2024<br>Assessment Se Ings 2 Pump & Fluid<br>PUMP & FLUID<br>Pump Type<br>Pump Speed<br>Drive<br>Fluid Type<br>Fluid Type<br>Fluid Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | End Suction<br>1780/<br>End Suction<br>1780<br>Direct Drive<br>Water<br>66                    | s (°C) System Setup Ass  Field Data  ANSI/API                   | sessment Diagram R |
| Pressue weasurement Temperature Measurement  POSO User Training 1 Last modified: Sep 14, 2024  Assessment Se (ngs 2 Pump & Fluid PUMP & FLUID  Pump Type Pump Speed Drive Fluid Temperature Specific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | End Suction<br>1780<br>End Suction<br>1780<br>Direct Drive<br>Water<br>68<br>0.97             | s (°C) System Setup Ass  Field Data  ANSI/API                   | sessment Diagram R |
| Pressue weasurement<br>Temperature Measurement<br>PSO User Training 1<br>Last modified: Sep 14, 2021<br>Assessment Serings 2 Pump & Fluid<br>PUMP & FLUID<br>Pump Type<br>Pump Speed<br>Drive<br>Fluid Type<br>Fluid Temperature<br>Specific Gravity<br>Kinematic Viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | End Suction<br>1780<br>End Suction<br>1780<br>Direct Drive<br>Water<br>68<br>0.97<br>0.836    | s (°C) System Setup Ass Field Data ANSI/API                     | essment Diagram R  |

| PSO User Training 1<br>Last modified: Sep 14, 2021 |                     | System Setup | Assessment | Diagram | Repo |
|----------------------------------------------------|---------------------|--------------|------------|---------|------|
| 1 Assessment Settings 2 Pump & Fluid               | 3 Motor             | 4 Field Data |            |         |      |
| MOTOR                                              |                     |              |            |         |      |
| Line Frequency                                     | 50 Hz               |              |            |         | ~    |
| Rated Motor Power                                  | 15                  |              |            |         | kW   |
| Motor RPM                                          | 1460                |              |            | r       | pm   |
| Efficiency Class                                   | Standard Efficiency |              |            |         | ~    |
| Rated Voltage                                      | 400                 |              |            |         | V    |
| Full-Load Amps<br>Estimate Full-Load Amps          | 29.61               |              |            |         | A    |

| PSO User Training 1<br>Last modified: Sep 14, 2021 |         | System Setup Asses | sment Diagram Repo |
|----------------------------------------------------|---------|--------------------|--------------------|
| 1 Assessment Settings 2 Pump & Fluid               | 3 Motor | 4 Field Data       |                    |
| FIELD DATA                                         |         |                    |                    |
| Operating Hours                                    | 8760    |                    | hrs/yr             |
| Electricity Cost                                   | 0.12    |                    | \$/kWh             |
| Flow Rate                                          | 102     |                    | mª/h               |
| Head<br>Calculate Head                             | 84.04   |                    | m                  |
| Load Estimation Method                             | Power   |                    | *                  |
| Motor Power                                        | 15      |                    | KW                 |
| Measured Voltage                                   | 460     |                    | V                  |



#### MEASUR: Output Result



- Results from initial output provide the baseline energy consumption.
- Next step is to add in saving opportunities and evaluate energy savings against the baseline

| PSO User Training 1<br>Last modified: Sep 14, 2021 |         | System Setup Assess | ment Diagram Repo | rt Sankey Calculators       |          |      |
|----------------------------------------------------|---------|---------------------|-------------------|-----------------------------|----------|------|
| 1 Assessment Settings 2 Pump & Fluid               | 3 Motor | Field Data          | •                 | ******                      | ******   |      |
| FIELD DATA                                         |         |                     |                   | RESULTS                     |          | HELP |
|                                                    |         |                     |                   |                             | Baseline |      |
| Operating Hours                                    | 8000    |                     | brs               | Percent Savings (%)         |          |      |
| Electricity Cost                                   | 0.40    |                     | C RAND            | Pump efficiency (%)         | 70.5     |      |
|                                                    | 0.12    |                     | \$/KVVI           | Motor rated power (kW)      | 15       |      |
| Flow Rate                                          | 102     |                     | m                 | Motor shaft power (kW)      | 13.4     |      |
| Head                                               | 35      |                     |                   | Pump shaft power (kW)       | 13.4     |      |
| Calculate Head                                     |         |                     |                   | Motor efficiency (%)        | 89.1     |      |
| Load Estimation Method                             | Power   |                     | -                 | Motor power factor (%)      | 81.4     |      |
| Motor Power                                        | 15      |                     | k.v.              | Percent Loaded (%)          | 89       |      |
| Measured Voltage                                   | 100     |                     |                   | Drive efficiency (%)        | 100      |      |
| Measured Voltage                                   | 400     |                     | <b>_</b>          | Motor current (A)           | 27       |      |
|                                                    |         |                     | <b>—</b>          | Motor power (kW)            | 15       |      |
|                                                    |         |                     | •                 | Annual Energy (MWh)         | 120      |      |
|                                                    |         |                     |                   | Annual Energy Savings (MWh) |          |      |
|                                                    |         |                     | 📕                 | Annual Cost                 | \$14,400 |      |
|                                                    |         |                     | •                 | Annual Savings              | - •      |      |
|                                                    |         |                     | •                 | *                           | ******   |      |





- There is often a difference between what the pump is providing the system and what the system really needs
- Try to think in terms of **Demand**, not **Supply**



#### Using MEASUR Head Tool



#### Head is a required input, where does it come from?









- It is obtained from the head calculator built into MEASUR
- Based on standard methods (i.e., Bernoulli), but also provides a method to adjust for non-ideal field conditions
- Information needed:
  - Suction pressure measurement
  - Discharge pressure measurement
  - Elevations of the pressure measurement locations
  - Line sizes at the same locations
  - Flow rate\*
- Two basic layouts are supported...



#### Two situations for calculating pump head



 $K_{s}$  represents all suction losses from the tank to the pump

 $K_d$  represents all discharge losses from the pump to the gauge  $\mathsf{P}_d$ 



Method 1: Pressure measured in pump suction and discharge lines

#### Method 2:

Pump draws suction from a tank (or well), with or without gas overpressure



#### Method 2: Example (hypothetical)





Ks represents all suction losses from the tank to the pump

 $\mathsf{K}_d$  represents all discharge losses from the pump to the gauge  $\mathsf{P}_d$ 

| Fluid Specific Gravity      |      | 1                                 |     |
|-----------------------------|------|-----------------------------------|-----|
| Flow Rate                   |      | 227                               | L/s |
| Suction                     |      | Discharge                         |     |
| Pipe diameter (ID)          |      | Pipe diameter (ID)                |     |
| 300                         | mm   | 250                               | mm  |
| Tank gas overpressure       |      | Gauge pressure (P <sub>d</sub> )  |     |
| (P <sub>g</sub> )           | (2)- | 380                               | kPa |
| 0                           | kPa  | Gauge elevation (Z <sub>d</sub> ) |     |
| Tank fluid surface          |      | 5                                 | m   |
| elevation (Z <sub>s</sub> ) |      | Line loss coefficients            |     |
| -3                          | m    | (K <sub>d</sub> )                 |     |
| Line loss coefficients      |      | 2                                 |     |
| (K <sub>s</sub> )           |      |                                   |     |
| 0.5                         |      |                                   |     |

| RESULTS                         | HELP    |
|---------------------------------|---------|
| Result Data                     |         |
| Differential Elevation Head     | 8.0 m   |
| Differential Pressure Head      | 38.82 m |
| Differential Velocity Head      | 1.09 m  |
| Estimated Suction Friction Head | 0.26 m  |
| Discharge Friction Head         | 2.18 m  |
| Pump Head                       | 50.35 m |

Copy Table



#### Method 2 example (situation just covered)



 ${\rm K}_{\rm s}$  represents all suction losses from the tank to the pump

 $\mathsf{K}_d$  represents all discharge losses from the pump to the gauge  $\mathsf{P}_d$ 

| Fluid Specific Gravity<br>Flow Rate                                                 |     | 1                                 |     |                         |                    |
|-------------------------------------------------------------------------------------|-----|-----------------------------------|-----|-------------------------|--------------------|
|                                                                                     |     | 227 □/<br>Discharge               |     |                         |                    |
|                                                                                     |     |                                   |     |                         | Pipe diameter (ID) |
| 300                                                                                 | mm  | 250                               | mm  |                         |                    |
| Tank gas overpressure                                                               |     | Gauge pressure (P <sub>d</sub> )  |     |                         |                    |
| (P <sub>g</sub> )                                                                   |     | 380                               | kPa |                         |                    |
| 0                                                                                   | kPa | Gauge elevation (Z <sub>d</sub> ) |     |                         |                    |
| Tank fluid surface<br>elevation (Z <sub>s</sub> )<br>-3 m<br>Line loss coefficients |     | 5                                 |     |                         |                    |
|                                                                                     |     | Line loss coefficients            |     |                         |                    |
|                                                                                     |     |                                   |     |                         | 2                  |
|                                                                                     |     | (K <sub>s</sub> )                 |     | - 24 <del>-</del><br>1- | )                  |
| 0.5                                                                                 |     |                                   |     |                         |                    |

 The 380 kPa discharge pressure corresponds to the average pressure in the pump discharge column head.

Equptian program for promoting

- For cases involving long columns, you must address the column friction losses in the discharge line loss coefficients entry.
- Note: suction tank fluid surface elevation = -3.00 m; the level in a clear-well from which the pump drew suction was 3m below floor level, which was used as a reference.
- The discharge pressure gauge was on the pump base, about 5m above the floor level.



# When, Why, and How questions related to the loss coefficient



- When should it be used:
  - Any time there are fittings between the pressure measurement reference points and the pump that may introduce friction losses
- Why use it:
  - Failure to account for those losses will understate the actual pump head
- How:
  - Use component-specific loss coefficients (excellent)
  - Use generic loss coefficients (poor)
  - A very helpful how to: use the MEASUR head calculator to get a handle on whether it is important or not



#### MEASUR Head Calculations



#### - can be used to get a sense of uncertainty importance

| Discharge                         |       |          | Discharge                         |         |          |                    |
|-----------------------------------|-------|----------|-----------------------------------|---------|----------|--------------------|
| Pipe diameter (ID)                |       |          | Pipe diameter (ID)                |         |          |                    |
| 500                               |       | mm       | 500                               |         | mm       |                    |
| Gauge pressure (Pd)               | 0     |          | Gauge pressure (P <sub>d</sub> )  | $\circ$ |          |                    |
| 860                               | as    | kPa      | 860                               | )<br>Š  | kPa      |                    |
| Gauge elevation (Z <sub>d</sub> ) | D     |          | Gauge elevation (Z <sub>d</sub> ) | Ô       |          |                    |
| 5                                 | 1A    | m        | 5                                 | 1B      | m        | 4 X 1055 K ->      |
| Line loss coefficients            |       |          | Line loss coefficients            |         |          | 1% change in head  |
| (K <sub>d</sub> )                 |       |          | (K <sub>d</sub> )                 |         |          |                    |
| 5                                 |       |          | 20                                |         |          |                    |
| Pump Head                         |       | 96.29 n  | n Pump Head                       |         | 97.31 m  |                    |
| Discharge                         |       |          | Discharge                         |         |          |                    |
| Pipe diameter (ID)                |       | 1.12     | Pipe diameter (ID)                |         | _        |                    |
| 400                               |       | mm       | 400                               |         | mm       |                    |
| Gauge pressure (Pd)               | 0     |          | Gauge pressure (P <sub>d</sub> )  | 0       |          |                    |
| 900                               | as    | kPa      | 900                               | Se      | kPa      |                    |
| Gauge elevation (Z <sub>d</sub> ) | 0<br> |          | Gauge elevation (Z <sub>d</sub> ) | N       |          | 2 X 1055 K =>      |
| 5                                 | DA    | m        | 5                                 | Đ       | m        | 10% change in head |
| Line loss coefficients            |       |          | Line loss coefficients            |         |          |                    |
| (K <sub>d</sub> )                 |       |          | (K <sub>d</sub> )                 |         |          |                    |
|                                   |       |          | 10                                |         |          |                    |
| Pump Head                         |       | 115.82 m | Pump Head                         |         | 128.03 m | 133                |



Egyptian program for promoting ndustrial Motor Efficiency

# **MEASUR Example 1**

### Cooling Water System De-mineralised Water Pumps









135

## Simplified Flow Diagram









#### A Friction dominated system



#### **Application:**

Demineralized water for process cooling

#### Original pump and motor design: 4 parallel pumps: 233 l/s @ 89 m, motor 1 785 rpm, 260 kW, 2300 V

Current system requirements: 76 l/s @ 43 m head



#### Original pump curves





#### Warning on motor control box

Egyptian program for promoting Andustrial Motor Efficiency

Operators can't always accommodate outdated engineering (i.e., changed facility demands)



بركيز تجديث الصلاء

thing a time on daily



139

#### Actual vs Required operating point





#### Maintenance issues



#### Off-design operation of pumps will result in increased operating AND maintenance costs





#### Other Information



- Single stage API Double Suction Pump
- Direct Drive
- IE1 Motor
- EGP 0.9 / kWh
- 8760 hrs/y



#### MEASUR applied to existing operating point

gef



| RESULTS                     |                  |
|-----------------------------|------------------|
|                             | Baseline         |
| Percent Savings (%)         | <u></u>          |
| Pump efficiency (%)         | 57.5             |
| Motor rated power (kW)      | 260              |
| Motor shaft power (kW)      | 144.8            |
| Pump shaft power (kW)       | 144.8            |
| Motor efficiency (%)        | 94.1             |
| Motor power factor (%)      | 82.3             |
| Percent Loaded (%)          | 56               |
| Drive efficiency (%)        | 100              |
| Motor current (A)           | <mark>4</mark> 7 |
| Motor power (kW)            | 154              |
| Annual Energy (MWh)         | 1,349            |
| Annual Energy Savings (MWh) | -                |
| Annual Cost                 | \$1,214,136      |
| Annual Savings              | -                |





# Considering what was really required to fulfil the system's

# Ultimate goal

#### Cast an entirely different light on the opportunity


#### **MEASUR** applied to new *Process* requirements



| PSO<br>Last Mod | Expert Den<br>dified 11/30/21, 4:31 F | nin<br>M | Print Expo    |                    |                                                               |
|-----------------|---------------------------------------|----------|---------------|--------------------|---------------------------------------------------------------|
| Result Data     | Report Graphs                         | Sankey   | Input Summary | Facility Info      |                                                               |
|                 |                                       |          |               |                    | 72.0%                                                         |
| Pump efficie    | ncy (%)                               |          |               | 57.5               | 80.5                                                          |
| Motor rated     | power (kW)                            |          |               | 260                | 55                                                            |
| Motor shaft j   | power (kW)                            |          |               | 144.8              | 39.7                                                          |
| Pump shaft      | power (kW)                            |          |               | 144.8              | 39.7                                                          |
| Motor efficie   | ncy (%)                               |          |               | 94.1               | 92.2                                                          |
| Motor power     | factor (%)                            |          |               | 82.3               | 83.3                                                          |
| Percent Loa     | ded (%)                               |          |               | 56                 | 72                                                            |
| Drive efficier  | ncy (%)                               |          |               | 100                | 100                                                           |
| Motor currer    | nt (amps)                             |          |               | 47                 | 13                                                            |
| Motor power     | (kW)                                  |          |               | 154                | 43.1                                                          |
| Annual Ene      | rgy (MWh)                             |          |               | 1,349              | 377                                                           |
| Annual Ene      | rgy Savings (MWh)                     |          |               | —                  | 972                                                           |
| Annual Cos      | st (\$)                               |          |               | <b>\$1,214,136</b> | \$339,607                                                     |
| Annual Sav      | ings <mark>(</mark> \$)               |          |               | -                  | \$874,529                                                     |
| Implementat     | ion Cost                              |          |               | -                  | 1774                                                          |
| Payback Per     | riod (months)                         |          |               | —                  | 0                                                             |
|                 |                                       |          |               |                    | *Optimized                                                    |
| Selected Er     | nergy Projects                        |          |               | -                  | Install More Efficient Pump<br>Reduce System Head Requirement |





# **Options Considered**



- Trim the pump impeller
- Get a new, smaller pump
- Add a VSD

#### But what was finally decided was a little unconventional







# **Change of motor**

#### A 93 kW 6-pole (1190 rpm) motor was installed on an existing demineralized water pump



A motor with a broken foot was replaced

gef

بركيز تجديث الصلاء



WY A CAN DE CAN

### Avoided Throttle Losses





# Head Reduced (psig)



By slowing the motor down, the operating head was dramatically reduced, even at the same flow rate





Discharge gauges on identical parallel pumps; left gauge is for a pump driven by a 4-pole motor, right gauge is for the pump with a 6-pole motor. Note: suction is ~ 25 psig.









#### Actual Implementation Simulated in MEASUR



| Pump Fluid                                                                                              | Motor 📍                                                    | Field [                | Data 📍                                                                                                                             |                                                             |                |                                                                                                                                                                                                                                                                                                                                  | 11<br>11                                                                                                          |                                                                                                  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| BASELINE                                                                                                |                                                            |                        | SCENARIO 1                                                                                                                         |                                                             |                | RESULTS                                                                                                                                                                                                                                                                                                                          | HELP                                                                                                              | NO                                                                                               |
| Line Frequency<br>Rated Motor Power<br>Motor RPM<br>Efficiency Class<br>Rated Voltage<br>Full-Load Amps | 50 Hz<br>260<br>1785<br>Standard Efficien<br>2300<br>78.73 | kW<br>rpm<br>cy v<br>A | Line Frequency<br>Rated Motor Power<br>Motor RPM<br>Efficiency Class<br>Rated Voltage<br>Full-Load Amps<br>Estimate Full-Load Amps | 50 Hz<br>93<br>1190<br>Standard Efficiency<br>2300<br>30.15 | KW<br>rpm<br>V | Pump efficiency (%)<br>Motor rated power<br>(kW)<br>Motor shaft power<br>(kW)<br>Pump shaft power<br>(kW)<br>Motor efficiency (%)<br>Motor power factor<br>(%)<br>Percent Loaded (%)<br>Drive efficiency (%)<br>Motor current (A)<br>Motor power (kW)<br>Annual Energy<br>(MWh)<br>Annual Energy<br>Savings (MWh)<br>Annual Cost | 57.5<br>260<br>144.8<br>144.8<br>94.1<br>82.3<br>56<br>100<br>47<br>154<br><b>1,349</b><br><br><b>\$1,214,136</b> | 57.5<br>93<br>55.6<br>55.6<br>92.9<br>77.2<br>60<br>100<br>19<br>59.9<br>525<br>824<br>\$472,297 |
|                                                                                                         |                                                            |                        |                                                                                                                                    |                                                             |                | Annual Savings                                                                                                                                                                                                                                                                                                                   |                                                                                                                   | \$741,839                                                                                        |





### Savings



# **Energy and EGP Savings:**

- Annual electricity cost reduction from this change is almost EGP 742 000 (other changes made to the system)
- Reduction in energy is 824 000kWh/y
- Installed new motor and cable cost was EGP 200 000
- Capital cost repaid in < 3 months







# **Other Benefits**

There were some other important tangential benefits:

- Seal face speed is reduced, seal life being extended
- The pump is more hydraulically stable, which means fewer maintenance problems are expected
- Noise levels are reduced both in the pump house and in the main Fusion building (hearing protection is no longer required)





Egyptian program for promoting ndustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# **MEASUR Example 2** Chilled Water Secondary Pump J106







Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY ..... POWER TOMORROW



### Pump Data





Photo Courtesy of Oak Ridge National Laboratory

#### **Observed:**

- Suction Pressure 216 kPa
- Discharge Pressure 557 kPa
- Gauge elevation 0.43 m
- Total head 37.5 m
- Flow rate 102 m<sup>3</sup>/h





### **Using MEASUR Head Tool**

Egyptian program for promoting ndustrial Motor Efficiency TODAY ... POWER TOMORROW

Suction tank elevation Suction gauge elevation



Ks represents all suction losses from the tank to the pump

K<sub>d</sub> represents all discharge losses from the pump to the gauge P<sub>d</sub>

102

Discharge

Fluid Specific Gravity

Pipe diameter (ID)

Flow Rate

Suction

#### **INPUTS**

•

m3/h

- Suction Pressure 216 kPa
- Suction Diameter 50 mm
- Gauge elevation 0.43 m

| Discharge Pressure | 557 | kPa |
|--------------------|-----|-----|
|--------------------|-----|-----|

- Discharge Diameter 50 mm
- - I 40

| Pipe diameter (ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pipe diameter (ID)               | Gauge elevation                 | 1 0.43 m |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|----------|
| 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                               | mm                              |          |
| Gauge pressure (Pg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gauge pressure (P <sub>d</sub> ) |                                 |          |
| 216 kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 557                              | kPa                             |          |
| Gauge elevation (Z <sub>s</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gauge elevation $(Z_d)$          |                                 |          |
| 0.43 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.43                             | Result Data                     |          |
| Line loss coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Line loss coefficients           | Differential Elevation Head     | 0.0 m    |
| (K <sub>s</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (K <sub>d</sub> )                | Differential Pressure Head      | 34.83 m  |
| 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                              | Differential Velocity Head      | 0.0 m    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Estimated Suction Friction Head | 0.53 m   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Discharge Friction Head         | 2.12 m   |
| Wing (1997) States Stat | gef                              | Pump Head                       | 37.49 m  |
| INDESIGNAL HODEROUXING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analis www.tream.org             |                                 |          |





#### Nameplate:

- 15 kW
- 1460 rpm @ 50 Hz
- 400 V
- 29.6 A (full load)
- IE1





### **Baseline Results**



Egyptian program for promoting ndustrial Motor Efficiency SAVE TODAY .... POWER TOMORROW

#### RESULTS

|                             | Baseline |
|-----------------------------|----------|
| Percent Savings (%)         |          |
| Pump efficiency (%)         | 77.7     |
| Motor rated power (kW)      | 15       |
| Motor shaft power (kW)      | 13.4     |
| Pump shaft power (kW)       | 13.4     |
| Motor efficiency (%)        | 89.1     |
| Motor power factor (%)      | 81.4     |
| Percent Loaded (%)          | 89       |
| Drive efficiency (%)        | 100      |
| Motor current (A)           | 27       |
| Motor power (kW)            | 15       |
| Annual Energy (MWh)         | 131      |
| Annual Energy Savings (MWh) | <u></u>  |
| Annual Cost (\$)            | 13,140   |
| Annual Savings (\$)         |          |
|                             |          |





#### **BUT** supply and demand are unbalanced



There is > 158 kPa pressure drop across the throttled valve; the downstream pressure was measured to be 379.2 kPa (3 meters above floor)

Suction gauge:216.5 kPaDischarge gauge:379.2 kPa

Total pump head:18.6 mThis is the net required

head





#### Opportunity: Install VSD instead of Throttle



|                                                               | Explore Opportunities Novice View | Modify All Condition | s                    |                       |  |
|---------------------------------------------------------------|-----------------------------------|----------------------|----------------------|-----------------------|--|
|                                                               | Modification Name                 |                      | Scenario 1           |                       |  |
| Opportunity:                                                  | ✓ Install VFD                     |                      |                      |                       |  |
| • Use a VSD instead of a                                      | Base                              | line                 | Modifi               | cations               |  |
| throttle valve for flow control                               | Flow I                            | Rate                 | Flow Rate            |                       |  |
| <ul><li>Flow is the same</li><li>Head required with</li></ul> | Hea<br>37                         | ad                   | 102<br>He<br>Calcula | ead<br>ate Head       |  |
| throttle is 37 m                                              | Motor                             | Drive                | 18.6<br>Drive F      | m                     |  |
| and no throttle is 18.6 m                                     | Direct                            | Drive                | 95                   | %                     |  |
|                                                               | Pump<br>End Suction               | Type<br>ANSI/API     | Pump E               | Efficiency<br>ze Pump |  |
|                                                               |                                   |                      | 89.56                | %                     |  |

....

M PA AU A PR





# **Output Results**



Egyptian program for promoting ndustrial Motor Efficiency

| RESULTS                        | SAN      | KEY HELP   |
|--------------------------------|----------|------------|
|                                | Baseline | Scenario 1 |
| Percent Savings (%)            |          | 53.0%      |
| Pump efficiency (%)            | 77.7     | 89.6       |
| Motor rated power (kW)         | 15       | 15         |
| Motor shaft power (kW)         | 13.4     | 06.1       |
| Pump shaft power (kW)          | 13.4     | 05.8       |
| Motor efficiency (%)           | 89.1     | 86.7       |
| Motor power factor (%)         | 81.4     | 66.4       |
| Percent Loaded (%)             | 89       | 40         |
| Drive efficiency (%)           | 100      | 95         |
| Motor current (A)              | 27       | 15         |
| Motor power (kW)               | 15       | 07         |
| Annual Energy (MWh)            | 131      | 61         |
| Annual Energy Savings<br>(MWh) | -        | 70         |
| Annual Cost (\$)               | 13,140   | 6,125      |
| Annual Savings (\$)            | -        | 7,015      |
|                                |          |            |

#### Savings:

- Original operating cost = \$13,140. New operating cost = \$6,125
- Will save 47% of baseline consumption, savings of 70 000 kWh





Egyptian program for promoting ndustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# **MEASUR Example 3** Throttled Control Valve Losses



162

#### System Configuration and Operating Data

- Line size (all, except reducers at valve V1): 300 mm ID
- Fluid specific gravity is 1.00
- Valve V1 is 200 mm v-port ball
- Cost of electricity is \$0.40 /kWh
- Motor is 400-Volt, 200-kW, 1480 rpm, nameplate η = 95.8%
- All pressure gauges at 1.5 m above ground
- Pump is single stage end suction
- Both tanks are open to atmosphere



#### **Measured Operating Data**

| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| А         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |



Egyptian program for promoting ndustrial Motor Efficiencu







1. What is the static head for this system?

#### 2. What pressure would you expect at P1 with the pump off?



### Pump Head Condition A



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| A         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

3. For Condition A, estimate the <u>actual pump head</u> (use the MEASUR head calculator). Calculate the optimised % savings and annual energy costs of operation. (assume Ks = 0.5 loss for suction side and Kd = 1.0 loss for discharge side)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Pg) (p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RESULTS                         | HELP    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|
| Ţ<br>Z₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result Data                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Differential Elevation Head     | -1.5 m  |
| K <sub>s</sub> represents all su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uction losses from the tank to the pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Differential Pressure Head      | 63.33 m |
| K <sub>d</sub> represents all disch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arge losses from the pump to the gauge P <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Differential Velocity Head      | 0.16 m  |
| Fluid Specific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Estimated Suction Friction Head | 0.08 m  |
| Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Discharge Friction Head         | 0.16 m  |
| Suction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump Head                       | 62.24 m |
| Pipe diameter (ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pipe diameter (ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oran Tab                        |         |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm 300 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Сору Гар                        | le      |
| Tank gas overpressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gauge pressure (Pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |         |
| (Pg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 620 kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kPa Gauge elevation (Z <sub>d</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |         |
| Tank fluid surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |         |
| elevation (Z <sub>s</sub> )<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Line loss coefficients<br>(K <sub>d</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |         |
| Line loss coefficients<br>(Ks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |         |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The section of the s |                                 | 165     |
| annan i teana 1911 ann 1916 ann 1917 | INDUSTRIAL MODERNISATION CENTRE www.tregi#org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | 100     |

# Cost and Savings Condition A



|                             | Baseline | Scenario 1     |
|-----------------------------|----------|----------------|
| Percent Savings (%)         |          | 31.0%          |
| Pump efficiency (%)         | 59.4     | 87             |
| Motor rated power (kW)      | 200      | 200            |
| Motor shaft power (kW)      | 129.1    | 88.2           |
| Pump shaft power (kW)       | 129.1    | 88.2           |
| Motor efficiency (%)        | 95.7     | 94.9           |
| Motor power factor (%)      | 83.3     | 76.6           |
| Percent Loaded (%)          | 65       | 44             |
| Drive efficiency (%)        | 100      | 100            |
| Motor current (amps)        | 234      | 175            |
| Motor power (kW)            | 135      | 93             |
| Annual Energy (MWh)         | 591      | 407            |
| Annual Energy Savings (MWh) |          | 184            |
| Annual Cost (\$)            | 236,520  | 162,885        |
| Annual Savings (\$)         |          | 73,635         |
| Implementation Cost         | _        | _              |
| Payback Period (months)     | —        | 0              |
|                             |          | *Optimized     |
| Selected Energy Projects    |          |                |
| Modifications               |          | Pump and Fluid |





### Pump Head Condition A



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| Α         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

4. For condition A, what is the system head as measured after the valve (at P2)?

| Answer: Re | Result Data                     |         |
|------------|---------------------------------|---------|
|            | Differential Elevation Head     | -1.5 m  |
|            | Differential Pressure Head      | 36.67 m |
|            | Differential Velocity Head      | 0.16 m  |
|            | Estimated Suction Friction Head | 0.08 m  |
|            | Discharge Friction Head         | 0.16 m  |
|            | Pump Head                       | 35.58 m |



#### System Curve Condition A



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| A         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

5. Using the pump curve calculator in MEASUR, develop two system curves for **Condition A** :

- System curve for P1 Head point (which is the current throttled valve operation)
- System curve for P2 Head point (if the control valve were removed and a VSD used)

| System Curve            |              |     |
|-------------------------|--------------|-----|
| Fluid Specific Gravity  | 1            |     |
| System Loss Exponent, C | 1.9          |     |
| Point 1                 | i i          |     |
| Flow Rate               | 126          | L/s |
| Head                    | 62.2         | m   |
| Fluid Power, kW         | 0<br>0<br>76 | 75  |
| Point 2                 | I            |     |
|                         | Baseline     | ~   |
| Flow Rate               | 0            | L/s |
| Head                    | 27           | m   |
| Fluid Power, kW         | 00.          | 00  |

#### System Curve Condition A





### Pump Head Condition B



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| A         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

6. For Conditions B, estimate the actual pump head, optimised % savings and annual energy costs of operation.

(assume Ks = 0.5 loss for suction side and Kd = 1.0 loss for discharge side)



Ks represents all suction losses from the tank to the pump

 $\mathsf{K}_d$  represents all discharge losses from the pump to the gauge  $\mathsf{P}_d$ 

| Fluid Specific Gravity      |                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|-----------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Flow Rate                   |                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L/s |
| Suction                     |                                                            | Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Pipe diameter (ID)          |                                                            | Pipe diameter (ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 300                         | mm                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm  |
| Tank gas overpressure       |                                                            | Gauge pressure (Pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| (P <sub>g</sub> )           |                                                            | 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kPa |
| 0                           | kPa                                                        | Gauge elevation (Z <sub>d</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Tank fluid surface          |                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m   |
| elevation (Z <sub>s</sub> ) |                                                            | Line loss coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 3                           | m                                                          | (K <sub>d</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Line loss coefficients      |                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| (K <sub>s</sub> )           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 0.5                         |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                             | 3                                                          | × 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                             | yet Mechanal<br>Tradicioles Caralan<br>(20) Lucabethi (20) | مركنز تحديث المساعدة get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                             | nenti Mi                                                   | Construction of the Constr | 19  |

| RESULTS                         | HELP                 |
|---------------------------------|----------------------|
| ilt Data                        |                      |
| Differential Elevation Head     | -1.5 m               |
| Differential Pressure Head      | 52.81 m              |
| Differential Velocity Head      | 0.4 <mark>1</mark> m |
| Estimated Suction Friction Head | 0.2 m                |
| Discharge Friction Head         | 0.41 m               |
| Pump Head                       | 52 33 m              |

Copy Table

# Cost and Savings Condition B



| Percent Savings (%)         |              | 19.0%          |
|-----------------------------|--------------|----------------|
| Pump efficiency (%)         | 71.3         | 88             |
| Motor rated power (kW)      | 200          | 200            |
| Motor shaft power (kW)      | 143.6        | 116.3          |
| Pump shaft power (kW)       | 143.6        | 116.3          |
| Motor efficiency (%)        | 95.8         | 95.4           |
| Motor power factor (%)      | 84.6         | 81.8           |
| Percent Loaded (%)          | 72           | 58             |
| Drive efficiency (%)        | 100          | 100            |
| Motor current (amps)        | 256          | 215            |
| Motor power (kW)            | 150          | 121.9          |
| Annual Energy (MWh)         | 526          | 427            |
| Annual Energy Savings (MWh) | —            | 98.5           |
| Annual Cost (\$)            | 210,240      | 170,831        |
| Annual Savings (\$)         | —            | 39,409         |
| Implementation Cost         | ( <u>)</u> ( |                |
| Payback Period (months)     | —            | 0              |
|                             |              | *Optimized     |
| Selected Energy Projects    |              |                |
| Modifications               | -            | Pump and Fluid |



### Pump Head Condition B



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| A         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

7. For condition B, what is the system head as measured after the valve (at P2)?

| Answer: | Result Data                                                       |         |
|---------|-------------------------------------------------------------------|---------|
|         | Differential Elevation Head                                       | -1.5 m  |
|         | Differential Pressure Head                                        | 46.48 m |
|         | Differential Velocity Head 0<br>Estimated Suction Friction Head 0 | 0.41 m  |
|         |                                                                   | 0.2 m   |
|         | Discharge Friction Head                                           | 0.41 m  |
|         | Pump Head                                                         | 46.0 m  |



#### System Curve Condition B



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| A         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

8. Using the pump curve calculator in MEASUR, develop system curves based on the static head and the **Condition B** flow and both P1 and P2 head points.

| System Curve Data       |          | -   |
|-------------------------|----------|-----|
| System Curve            |          |     |
| Fluid Specific Gravity  | 1        |     |
| System Loss Exponent, C | 1.9      |     |
| Point 1                 | Ę        |     |
| Flow Rate               | .00      | L/s |
| Head                    | 52.33    | m   |
| Fluid Power, kW         | 102.     | 49  |
| Point 2                 | ц<br>Ч   |     |
|                         | Baseline | *   |
| Flow Rate               | 0        | L/s |
| Head                    | 27       | m   |
| Fluid Power, kW         | 00.0     | 00  |



#### System Curve Condition B





#### Eliminate Control Valve Savings Condition B



| Condition | Q, I/s | P1, kPa | P2, kPa | P3, kPa | Motor kW | % of time at Condition |
|-----------|--------|---------|---------|---------|----------|------------------------|
| A         | 126    | 620     | 359     | 345     | 135      | 50%                    |
| В         | 200    | 517     | 455     | 420     | 150      | 40%                    |
| С         | 0      | ???     |         |         |          |                        |

9. If the artificial head losses across the control valve could be eliminated, and a VSD is used to regulate flow, what would the energy savings be with an optimised pump?

| Modification Name    | Scenario 1                                  |                  | Percent Savings (%)            |                  |         |
|----------------------|---------------------------------------------|------------------|--------------------------------|------------------|---------|
| ☑ Install VFD        |                                             |                  |                                |                  | 25.0%   |
| Baseline             | Modifications                               |                  | Pump efficiency (%)            | 71.3             | 88      |
| Dabointo             |                                             |                  | Motor rated power (kW)         | 200              | 200     |
|                      | Flow Rate                                   |                  | Motor shaft power (kW)         | 143.6            | 107.6   |
| Flow Rate            |                                             |                  | Pump shaft power (kW)          | 143.6            | 102.2   |
| 200 L/s              | 200                                         | L/s              | Motor efficiency (%)           | 95.8             | 95.3    |
| Head                 | Head                                        |                  | Motor power factor (%)         | 84.6             | 80.5    |
| 52 m                 | Calculate Head                              |                  | Percent Loaded (%)             | 72               | 54      |
|                      | 46                                          | m                | Drive efficiency (%)           | 100              | 95      |
| Mater Drive          |                                             | Duite Efficiency |                                | 256              | 203     |
| WOOD Drive           | Drive Efficiency                            |                  | Motor power (kW)               | 150              | 113     |
| Direct Drive         | 95                                          | %                | Annual Energy (MWh)            | 526              | 396     |
| Pump Type            | Pump Type                                   |                  | Annual Energy Savings<br>(MWh) | _                | 130     |
| End Suction ANSI/API |                                             |                  |                                |                  |         |
|                      | Pump Efficiency 88.03 %<br>Known Efficiency |                  | Annual Cost (\$)               | 210,240          | 158,331 |
|                      |                                             |                  | Annual Savings (\$)            | <del>, _</del> ) | 51,909  |
|                      |                                             |                  |                                |                  |         |







#### 12. Specific Energy

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



# Specific Energy (E<sub>s</sub>)



- The amount of energy needed to pump one unit volume through the system
- The specific energy varies with flow-rate
- A good way of comparing pump system performance

ie. how much bang for your buck

• 
$$E_s = \underline{Pin \ x \ Time} = \underline{Pin}$$
  
 $V \qquad Q$ 

• <u>Energy Consumed</u> = Specific Energy Pumped Volume





Egyptian program for promoting ndustrial Motor Efficiency

# Variations in the understanding of the concept of Specific Energy

# **Examples**







#### Specific Energy for 3 systems with VSD pumps and different static heads





# Specific Energy is a function of Head



#### Possible Range of Specific Energy


# Specific Energy is a function of Head





# Specific Energy is a function of Head





182

#### Example – Specific Energy



- A centrifugal pump operates close to its best efficiency point (BEP =84%) while providing a flow rate of 110 l/s at a total head of 25 m.
- When an identical parallel pump is switched on, the composite system operating point shifts to 150 l/s at 35 m of head. Each pump now operates at 80% efficiency.
- What is the contribution of each pump in flow?
- What is the power consumption when one pump is operated?
- What is the power consumption when 2 pumps are operated?
- What is the specific energy consumption for each of the 2 conditions?



#### Given operating conditions Egyptian program for promoting ndustrial Motor Efficiency POWER TOMORROW (m) H 40 30 10 6) 30 200 (00) Q(Ż0 ten statest 184 gef مرکز تحدیث الصناعیة ISTRIAL MOBERNISATION CENTRE

#### Specific energy



Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY .... POWER TOMORROW









#### 13. Pre-Screening

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



# What is Pump System Optimization?



- PSO is a systematic approach to evaluate high energy use pumps to identify EEM's
- After prescreening pump systems, potential savings of the selected pumps are determined by measuring pressure, flow and power in the field.
- This data is combined with pump system operational data to determine an energy use baseline and the true system requirements.
- MEASUR can be used to provide a preliminary savings analysis. If there is a good opportunity, a more advanced analysis can be performed to determine the most cost effective improvement for PSO.





- The DOE Best Practices Program encourages a three tiered pre-screening and assessment approach that includes:
- Initial pre-screening based on size, run time and pump type.
- Secondary pre-screening to narrow the focus to systems where significant energy saving opportunities are more likely.
- Evaluating the opportunities and quantifying the potential savings.



188

#### Primary & Secondary Prescreening











4 common causes of less than optimal pump system performance:

- Installed components are inefficient at the typical operating condition
- The efficiency of the pump system components have degraded
- More flow or more head is being provided than the system requires
- The pump is being operated when it is not required by the system

# Using Field Observations to ID ESO's



- Valves throttled to control flow
- Bypass (re-circulation line) normally open
- Multiple parallel pump system with same number of pumps always operating
- Constant pump operation for a batch process
- Cavitation noise (at the pump or elsewhere in the system)
- High system maintenance
- Systems that have undergone a change in function



#### Sample Pre-screening Form



Egyptian program for promoting ndustrial Motor Efficiency

|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    | Operating Parameters                                   |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         | Additional                               |                   |                   |                        |
|-------------------------|--------------------------------------------|----------------------|--------------------|------------------------------------------|-------------------------|-----------------------------------------------------------|---------|------------------------|------------------------------------|----------------|--------|----------------------------------|------------------------------------|--------------------------------------------------------|------------------|----------------------------------------------------------------|------------------|-----------------------|-------------|------------------|-------------------|----------------------------------------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|-------------------|-------------------|------------------------|
|                         |                                            |                      |                    |                                          |                         |                                                           |         | Control schemes        |                                    |                |        |                                  |                                    | (provide if readily available, otherwise indicate with |                  |                                                                |                  |                       |             |                  |                   |                                                                      | Ot                                  | her                                     | Information                              |                   |                   |                        |
| Equipment Information   |                                            |                      |                    |                                          |                         |                                                           |         | (check all that apply) |                                    |                |        |                                  |                                    | check if it is acquirable)                             |                  |                                                                |                  |                       |             |                  |                   |                                                                      | symptoms                            |                                         | (is acquirable?)                         |                   |                   |                        |
| System name/description | Pump Type [MC, PD,<br>Vacuum, Centrifugal] | Pump ID/process area | Installed motor hp | Service<br>(e.g. utility, process, etc.) | Time in service (years) | nucate strated duty<br>pump systems/ in service<br>shares | Voltage | Adjustable speed drive | Throttled<br>(% open if available) | Bypass/Re-circ | On/off | More than one pump/split<br>duty | Not controlled (pumps<br>just run) | Operating hours or % of time equipment operates        | Power or Current | Flow requirements have<br>changed or are expected<br>to change | Design flow rate | Operational flow rate | Design head | Operational head | Upstream pressure | Downstream pressure<br>(after control valve, or<br>bypass line, etc) | Cavitation at pump or<br>in system? | System maintenance<br>level (Hi/Med/Lo) | Typical flow rates and variation thereof | Duration diagrams | Maintenance Costs | PID / DCS screen-shots |
| Bldg 83 cold well       | Centrifugal                                | 13 A, B              | 200                |                                          |                         |                                                           |         |                        | х                                  |                |        |                                  |                                    | 80                                                     |                  | No                                                             |                  | х                     |             |                  |                   |                                                                      |                                     | Med                                     |                                          |                   | $\square$         |                        |
| Raw water               | Centrifugal                                | 42 A, B, C           | 125                |                                          |                         |                                                           |         |                        | Х                                  | х              |        |                                  |                                    | 95                                                     |                  | No                                                             |                  |                       |             |                  |                   |                                                                      |                                     | Med                                     |                                          |                   | $\square$         |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   | $\square$         |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   | $\square$         |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   | $\square$         |                        |
|                         |                                            |                      |                    | 1                                        |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   | $\square$         |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    | 1                                        |                         |                                                           | 1       |                        |                                    |                |        | 1                                |                                    |                                                        | i –              |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          |                   |                   |                        |
|                         |                                            |                      |                    |                                          |                         |                                                           |         |                        |                                    |                |        |                                  |                                    |                                                        |                  |                                                                |                  |                       |             |                  |                   |                                                                      |                                     |                                         |                                          | $\square$         |                   |                        |

Example of a list of pumps to be populated by a company prior to the assessment (shaded fields are mandatory).



192





#### 14. Reliability & Maintenance

#### Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

#### Albert Williams Siraj Williams



# Factors that influence pump reliability





VERTICAL

1

Oning a tax on daily









Proper pump selection requires a through knowledge of the service the pump will be used in:

- Fluid characteristics
- Temperatures
- Flows and pressure
- System limitations

Some standards, commonly used, provide guidance on pump types for various applications



#### Importance of Proper Installation



- Pump installation is critical to long term pump system reliability and efficiency. Standards for each of the areas below should be reviewed to insure a proper installation;
  - Motor/pump coupling alignment
  - Pump hold down bolts, mounting, grouting, bedplate construction
  - Proper piping size, component installation (ANSI/HI 9.6.2)
- One company realized a 10 fold increase in reliability by instituting new installation specifications relating to base-plate, piping, and grouting.



بركيز تجديث الصلاء

Uning a transfer discuss





#### Uneven flow into the pump









# A pipe fitters dream?









#### Not the greatest inflow conditions









#### Throttled inlet valve











# Throttled discharge valve



































































NILLA DE LEVEL











- An area of **low pressure** is always present at the impeller eye
- When this pressure is low enough, the liquid flashes
- Vapour bubbles form
- These bubbles collapses when moving further into the impeller in high pressure areas
- This is called cavitation, which is harmful to pump operation, performance and causes structural damage



#### **Cavitation Damage**

Egyptian program for promoting ndustrial Motor Efficiency

#### Impeller cavitation regions



# NPSH<sub>a</sub> should be greater than NPSH<sub>r</sub>



- Centrifugal pumps require enough pressure on the suction side of the pump to prevent flashing in the impeller eye.
- The amount of pressure required for a specific pump is determined by pump manufacturer during the design of the impeller and is confirmed during performance tests.
- This is called the Net Positive Suction Head Required. (NPSH<sub>r</sub>)
- At that pressure cavitation is already taking place by 3%.
- The available suction pressure NPSH<sub>a</sub> has to be 3% higher than the NPSH<sub>r</sub> in order to avoid cavitation.





$$NPSH_a = H_a \pm H_z - H_f + H_v - H_{vap}$$

- H<sub>a</sub> = Atmospheric pressure (absolute pressure, includes tank pressure, dependent on altitude)
- H<sub>z</sub> = Vertical height between suction side water level and pump centreline
- H<sub>f</sub> = friction loss through the suction pipe & fittings (always negative)
- H<sub>v</sub> = Velocity head at pump suction (kinetic energy of the water, generally negligible)
- H<sub>vap</sub> = Vapour pressure of water (pressure required to keep water in its liquid state)











#### **Cavitation Symptoms**



- The pump sounds like it is pumping rocks!
- High vacuum reading on suction line
- Low discharge pressure
- High flow rate





#### To increase NPSH available in the system:

- Unblock suction line (remove debris in pipe, clean strainer, clean out suction tank)
- Increase suction line diameter
- Raise liquid level or lower the pump
- Move pump closer to tank
- Fully open suction line valve
- Use a booster pump
- Sub-cool the liquid



#### **Cavitation Remedies**



#### To reduce NPSH required by the pump:

- Move duty point left on curve
- Use oversize pump
- Run pump at slower speed
- Use a double suction impeller (two eyes)
- Use a larger impeller eye diameter (higher suction specific speed impeller). Lower inlet velocity due to increased area for the same flow.
- Use an inducer (special type of impeller)





- Pump system reliability is compromised when pump flow rate increases or decreases away from the BEP due to higher (or lower) system pressures.
- Be careful when a VSD is used, since the forces inside the pump generally are reduced and seal face speed is lower, but if the pump is operating in a *High Static Head* application, these forces could increase and lead to shaft failures.


# Pump Operation / Reliability







### Maintenance Costs Relative to Distance from BEP





#### Flow rate

|                  | % of BEP     | 20%      | 40%      | 60%     | 75-115% | 140%     | \$/Failure | l     |
|------------------|--------------|----------|----------|---------|---------|----------|------------|-------|
| Seals:           | Life         | 2 Months | 4 Months | 1 Year  | 2 year  | 2 months | \$1,000    | Parts |
|                  | Failure/Year | 6        | 3        | 1       | 0.5     | 6        | \$500      | Labor |
|                  | Cost/Year    | \$9,000  | \$4,500  | \$1,500 | \$750   | \$9,000  |            |       |
| Bearings:        | Life         | 1 Year   | 3 Year   | 4 Year  | 5 Year  | 1 Year   | \$500      | Parts |
|                  | Failure/Year | 1        | 0.33     | 0.25    | 0.2     | 1        | \$500      | Labor |
|                  | Cost/Year    | \$1,000  | \$333    | \$250   | \$200   | \$1,000  |            |       |
| Casing/Impeller: | Life         | 2 Year   | 5 Year   | 7 Year  | 10 Year | 2 Year   | \$2,000    | Parts |
|                  | Failure/Year | 0.5      | 0.2      | 0.014   | 0.1     | 0.5      | \$0        | Labor |
|                  | Cost/Year    | \$1,000  | \$400    | \$285   | \$200   | \$1,000  |            |       |
| Total Cost/Year  |              | \$11,000 | \$5,230  | \$2,040 | \$1,150 | \$11,000 | 8          |       |

### Table Courtesy of J. Hodgson.



## Main Components of Centrifugal Pumps

2

Omine a Case on dist.





# **Bearing Housing**



- Radial and thrust bearing
- Lubrication system



















- End suction, overhung open impeller pump
- Optimum Duty
  - $F_R = 1800 \text{ N}$ ,  $F_A = 4050 \text{ N}$
  - P = 6 156 N, L<sub>na</sub> = 24 755 hrs (bearing life)
  - Approximately 5-10 years operation life
- Worn pump operating off BEP
  - Radial thrust 300% increase above normal
  - Axial thrust 50% increase
  - P = 16 767 N, L<sub>na</sub> = 1 225 hrs (bearing life)
  - Bearing failure after approximately 1.8 months











Fig 17: Radial Thrust and Vibration Increases as Pump Operation Moves Away From BEP









The further the pump is operated away from design flow  $(Q_{nom})$  versus the actual flow (Q) the greater the stress on the bearings (for a full speed pump)









# Gland Packing Seals



get





### **Mechanical Seals**



Egyptian program for promoting ndustrial Motor Efficiency SAVE TODAY .... POWER TOMORROW



### Stress on shaft and seals





The further the pump is operated away from design flow (Q<sub>nom</sub>) versus the actual flow (Q) the greater the shaft deflection and stress on the seals (for a full speed pump)





- Increased radial load and shaft deflection
- 50% increase in radial load
- Angular misalignment exceeds 0.05 mm
- Exponential deterioration of seal life
- Less than 6 months life







230

### **Shaft Deflection**







### **Shaft Deflection**

# **Throttled Discharge**



Springs operating 3000 x Min. to keep the faces together.







### **Shaft Deflection**

## Maximum Discharge Too much Capacity



Springs operating 3000 x Min. to keep the faces together.



### Shaft deflection - Throttled Discharge





### Shaft deflection - Too much Capacity





### Verify correct functioning of seals and bearing cooling





| Label        | Value   |
|--------------|---------|
| Spot         | 70.1°F  |
| Max T. : max | 178.9°F |
| Ref T : max  | 89.1°F  |
| Delta T      | 89.78°F |



| IR information   | Value       |
|------------------|-------------|
| Date of creation | 10/27/2005  |
| Time of creation | 12:52:07 PM |

### Fault Description and Conditions

Seal is operating at higher than normal temperatures. It appears that the seal lubrication is not circulating as it should





- Five levels of maintenance operating practices:
  - *Lowest Level:* Fix it when it breaks, few maintenance records or spare parts, lack of training/capabilities
  - Second Level: Short range fixes, better maintenance records, some spare parts maintained
  - Third Level: Planned preventive maintenance, routine inspections, lubrication and adjustments made, good maintenance records, input from operations and engineering for maintenance problem solving
  - Top Level: Predictive maintenance techniques used (vibration, thermography), performance monitoring, problems are anticipated, computerized maintenance management system fully utilized



# **Typical Condition Monitoring**



### Describes advantage of Performance Monitoring

Vibration



# Wear Rings



- Wear rings to provide proper clearances (between impeller and casing)
- Over time these clearances increase, recirculation the fluid from the high pressure side of an impeller to the low pressure side.





# How pump wear can impact pump performance









With the second second

### Making clearance adjustments to improve pump efficiency



Pump efficiency can be improved by adjusting impeller clearances for hollow shaft motors with semi-open impellers





Egyptian program for promoting moustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# De-rating due to pumping Slurries





# **Deviations for Slurry Curves**



### • Slurry De-rating Factors

| Head Ratio =       | Total head developed on slurry |  |
|--------------------|--------------------------------|--|
|                    | Total head developed on water  |  |
| Efficiency Ratio = | Pump efficiency on slurry      |  |
|                    | Pump efficiency on water       |  |

### • Theoretical Data

- Density of solids
- Particle size distribution
- Average particle size D50
- Concentration of solids in slurry, CV
- Impeller diameter





### **Actual Slurry Performance**

بركيز تحديث الم



### **Determining Head and Efficiency Ratios Through Testing**





Egyptian program for promoting moustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# De-rating due to Viscous effects





### **Viscous Liquid Correction Factors**

$$Q_{Viscous} = C_{Q} \cdot Q_{Wat}$$

$$H_{Viscous} = C_{H} \cdot H_{W}$$

$$\eta_{Viscous} = C_{\eta} \cdot \eta_{Water}$$

$$P_{Viscous} = \frac{P_{Water}}{C}$$

This gives you a point on the pump curve for the viscous fluid, with:

- Q<sub>Viscous</sub> = Capacity of the pump using viscous fluid
- H<sub>Viscous</sub> = Head of the pump using viscous fluid
- eta<sub>Viscous</sub> = Efficiency of the pump using viscous fluid
- P<sub>Viscous</sub> = Pumping power using viscous fluid
- C<sub>O</sub> = Capacity correction factor
- C<sub>H</sub> = Head correction factor
- C<sub>eta</sub> = Efficiency correction factor
- Q<sub>Water</sub> = Capacity of the pump for water
- H<sub>Water</sub> = Head of the pump for water
- eta<sub>Water</sub> = Efficiency of the pump for water
- P<sub>Water</sub> = Pumping power for water





246









### **Viscous Liquid Correction Factors**



Section D -- Properties of Liquids

D-4 Viscosity Corrections for Capacities of 100 GPM or Less Fig. 6 Sample Performance Chart



### Many factors affect maintenance

Egyptian program for promoting Adustrial Motor Efficiency SAVE TODAY ---- POWER TOMORROW



#### Slide Courtesy of Oak Ridge National Laboratory





### Just like any stable control system, optimal asset management requires feedback

Unfortunately, feedback is often weak or non-existent







### 15. Motors

### Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

### Albert Williams Siraj Williams



## Common Motor Types



### • Types

- Motors used for high torque applications
- General purpose Motors
- Special purpose Motors
- Enclosures:
  - Open drip proof (ODP)
  - Totally enclosed fan cooled (TEFC)
- Mounting
  - Vertical or horizontal
  - Close coupled or shaft mounted
- Service
  - Inverter duty
  - Variable or constant torque




#### Motor nameplate data terms



- Rated Voltage: Motors are typically designed to be operated +/- 10% of the rated voltage.
- Rated Full Load Amperage: This is the value reached when full load torque and power is applied. FLA is used to select the correct wire size and overload protection devices.
- Rated full load Speed: This is the motor speed under full load conditions.
- Insulation Class: Insulation class can be B,F,H and is a measure of how hot the windings can get without shortening the life of the motor.



#### Motor nameplate data terms



- **Rated Power Output**: The rated shaft power output at the rated voltage, current and frequency. Units are kW for IEC motors, and HP for NEMA motors.
- Service factor: Service factor is an indication of how much overload a motor can take. Motors should not be operated in the service factor continuously.
- Full load efficiency: This is often given as "nominal" or "guaranteed minimum" and provides an indication of motor efficiency.



#### Conditions that can affect motor performance

- Frequent starts and stops
- Power Quality (i.e. harmonics)
- Application of VSD's
- Operating in the service factor
  - NEMA recommends that motors should be de-rated when operating in the SF area
- Voltage unbalance or under/over voltage
  - Creates additional heat
  - Increases motor internal losses
  - Motor is de-rated for high voltage unbalance
- Environmental conditions
  - Poor cooling due to high ambient temperatures
  - Partially clogged motor vents
  - Dirty/wet application





#### Different motor loads for different types of centrifugal pumps





Slide Courtesy of Oak Ridge National Laboratory



256

## Typical high efficiency motor curves



#### (150 kW, 4-Pole)



257

## Motor efficiencies for 75 kW motors



- typical performance curves over normal pump load range



Slide Courtesy of Oak Ridge National Laboratory



# Effect of an oversized motor (virtually nothing)







#### Motor improvements



## Determine existing condition of motors

- Electrical measurements
- Motor circuit analysis, infrared thermography
- Efficiency

## Plan ahead for repair/replace options

- Use MEASUR or *MotorMaster* software to evaluate savings by upgrading to a premium efficiency motor
- Application of VSD will impact new motor type





### Motor improvements



- Evaluate how pump upgrades may effect the motor
  - Opportunity to resize the motor
  - Effect of VSD
  - Impact on motor service factor
- Determine how motor upgrades will impact pump performance
  - The higher RPM of premium efficiency motors will increase pump capacity and power
  - The absorbed power is ± proportional to the cube of the speed!!!
  - A 2% speed increase could lead to 8% higher power useage







#### 16. Control Methods

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



# Flow Control in Pumping Systems



#### **Process Types:**

- Continuous
- Batch
- Combination

#### Can be either Steady or Variable flow

#### **Control Strategies:**

- On/off
- Valve throttling
- Bypassing
- VSD
- Combinations





#### Flow Control Methods





#### Level Control Methods





#### Pressure control methods





#### **Mechanical Flow Control**







We will look at two options to achieve flow control in pumping systems:

- Change the **system curve** (valve throttling, bypass control, process demand change);
- Change the **pump curve** by
  - Changing the pump speed (by using a VSD or changing the motor)
  - Trimming the impeller or
  - Downsizing the pump/motor





## Pump System Energy Representation









# Throttling: Duty Point Moves to Left on the Pump Curve







# Throttling: Duty Point Moves to Left on the Pump Curve





#### How does a VSD save energy?



#### The pump curve changes, *not* the system curve



## **Pump Throttling Alternatives**



- There are a number of alternatives that can be examined as an alternative to throttling;
  - Speed regulation
  - Impeller change or trimming
  - Multiple pumps of same or different sizes
  - Combinations of the above
  - Process change
- A Life Cycle Cost (LCC) analysis could be used to find the best alternative instead of the Lowest Delivered Cost.







- The true value of a VSD is the ability to precisely match motor and pump output to process requirements.
- Potential benefits of precise process speed control:
  - Improved product quality
  - Improved process throughput
  - Improved process control
  - Energy savings







The VSD will have an impact on the function of several elements



# Different Variable Speed Control Devices



- Pulse Width Modulated VSD (PWM)
- Magnetic Coupling
- Mechanical Drive

# **Other types:**

- DC Drives
- Variable Voltage Inverter (VVI)
- Current Source Inverter (CSI)



## Different Variable Speed Control Devices







Figures Courtesy of Hi-Lo Manufacturing and Eaton Drives

Unique behavior of VSD controlled induction motors



- Control of motor torque
- Control of motor speed
- Reduced starting current
- Improved efficiency over a range of operating conditions



### VSD benefits



- Controls speed variations
- Provides mechanical control
- Eliminates startup impacts causing system vibration
- Provides fault tolerance
- Supports soft starts
- Restarts spinning load
- Controls speed swings
- Enhances product quality
- Can conserve energy in some systems
- Improves power factor (with active front-end)



## Potential VSD issues



- Static head considerations
- Harmonics could effect instrumentation
- Fault-out (equipment shut-down) when power quality varies
- Bearing currents
- Mechanical vibrations
- Increased noise (acoustical)
- May need to include a full voltage starter as a bypass control







Egyptian program for promoting ndustrial Motor Efficiency SAVE TODAY .... POWER TOMORROW

# VSD Pulp and Paper Application at Paper Mill





#### **Overview of Pump System**







282









Pump Curve





#7 PM FAN PUMP



gef

مركبز تحديث الصناعية ISTRIAL MOBERNISATION CENTRE

Normal A Conception



| Interval | Hours | Flow<br>(m³∕hr) | TDH<br>(m) | Pump<br>Eff. (%) | VSD<br>TDH (m) | Trimmed<br>Pump<br>Eff. (%) | AC<br>Drive<br>Eff. (%) | Trimmed<br>Impeller<br>TDH (m) |
|----------|-------|-----------------|------------|------------------|----------------|-----------------------------|-------------------------|--------------------------------|
| 1        | 1 758 | 1 022           | 34         | 70               | 6.4            | 70                          | 90                      | 22.9                           |
| 2        | 2 628 | 1 249           | 33         | 75               | 7.7            | 74                          | 91                      | 22.2                           |
| 3        | 876   | 1 476           | 32         | 79               | 8.8            | 80                          | 92                      | 21.3                           |
| 4        | 3 504 | 1 930           | 20         | 90               | 11.6           | 86                          | 92                      | 17.4                           |

| Impeller Trim to 18"               |                 |                 |             |  | AC PWM VSD       |                 |                 |         |
|------------------------------------|-----------------|-----------------|-------------|--|------------------|-----------------|-----------------|---------|
| Interval                           | kW<br>Existing* | kW<br>Proposed* | Savings     |  | Interval         | kW<br>Existing* | kW<br>Proposed* | Savings |
| 1                                  | 142             | 96              | 80 868      |  | 1                | 142             | 25              | 205 686 |
| 2                                  | 158             | 108             | 131 400     |  | 2                | 158             | 36              | 320 616 |
| 3                                  | 173             | 113             | 52 560      |  | 3                | 173             | 47              | 110 376 |
| 4                                  | 182             | 112             | 245 280     |  | 4                | 182             | 80              | 357 408 |
| Total kWh Saving                   |                 |                 | 510 108     |  | Total kWh Saving |                 |                 | 994 086 |
| Annual Cost Savings (EGP 0.90/kWh) |                 |                 | EGP 459 097 |  | Annual Co        | EGP 894 677     |                 |         |





### **Pump Recommendations**

- Verify Efficiency, Flow and calculated kW data
- Evaluate control variation of each option
- Perform detailed cost estimates

|                          | AC Drive      | <b>Impeller Trim</b> |
|--------------------------|---------------|----------------------|
| Energy Savings per year: | EGP 894 677   | EGP 459 097          |
| Estimated Project Cost:  | EGP 3 600 000 | EGP 230 000          |
| Simple Payback:          | 4 years       | 6 months             |
| NPV. IRR?                |               |                      |





Egyptian program for promoting





#### 17. Collect Data & Field Measurements

Pump Systems Optimisation (PSO) Expert Level Training (Egypt Edition – Dec 2021)

> Albert Williams Siraj Williams



# Collection of Equipment and Fluid Data



- **Driver information** (the ASME standard focuses on motor-driven pumps)
  - Motor nameplate: Type, Voltage, Frequency, Full Load Amps, rated Power, Speed, Efficiency, Power Factor, Service Factor.
- Pump
  - Type, Number of stages, Speed, Flow and Head design point, Impeller diameter, Pump curve, Maintenance records, presence of Cavitation.
- Fluid Properties
  - Temperature, Viscosity, Density or Specific Gravity, presence of Solids


### Example of Equipment Data Collection Form



289

| Tester                   |          | Date   |                         | Time | ~~~          |
|--------------------------|----------|--------|-------------------------|------|--------------|
| Facility                 |          | System | Parallel Pumps Running: |      | mps Running: |
| PUMP NAMEPLATE           | ID / SET |        |                         |      |              |
| Pump Style               | 2        |        |                         |      |              |
| Nameplate Pump Speed     | RPM      |        |                         |      |              |
| Number of Stages         | ÷        |        |                         |      |              |
| MOTOR NAMEPLATE          |          |        |                         |      |              |
| Power                    | HP       |        |                         |      |              |
| Full Load Speed          | RPM      |        |                         |      |              |
| Full Load Efficiency     | %        |        |                         |      |              |
| Rated Voltage            | VOLTS    |        |                         |      |              |
| Full Load Current        | AMPS     |        |                         |      |              |
| PUMP, FLUID DATA         | Units    |        |                         |      |              |
| Pump Rotational Speed    | RPM      |        |                         |      |              |
| Flow Rate                | GPM      |        |                         |      |              |
| Specific Gravity         | i.e.     |        |                         |      |              |
| Suction Pressure         | PSIG     |        |                         |      |              |
| Suction Elevation        | FT       |        |                         |      |              |
| Suction Pipe Nom. Size   | IN       |        |                         |      |              |
| Discharge Pressure       | PSIG     |        |                         |      |              |
| Discharge Elevation      | FT       |        |                         |      |              |
| Discharge Pipe Nom. Size | IN       |        |                         |      |              |
| ELECTRICAL DATA          | Units    |        |                         |      |              |
| Motor Rotational Speed   | RPM      |        |                         |      |              |
| kW A-B or A-GR           | KW       |        |                         |      |              |
| kW C-B or B-GR           | KVV      |        |                         |      |              |
| kW C-GR                  | KVV      |        |                         |      |              |
| Power Total              | KVV      |        |                         |      |              |







get

www.fheGP

### A typical motor nameplate









### A typical motor nameplate

gef









### Pump nameplate data











gef



### Pump nameplate data





Nameplate speed here (1800 rpm) is NOT consistent with flow rate and head, it is the *nominal synchronous speed* 



Slide Courtesy of Oak Ridge National Laboratory



## Next... get a copy of the pump curve

#### Egyptian program for promoting +ndustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

#### Three types of pump curves:

- **Generic** curve for pump model usually from a manufacturers catalog
- **Certified** factory curve where the pump was tested at the factory
- Field certified curve where the pump was tested after installed in the field.

Getting a certified factory test curve for the specific pump you're buying should be encouraged as a standard practice for pumps above 50 kW; a field certified curve should be pursued for pumps above 150 kW



### Pump Curve with Impeller Trims









## Develop a simplified flow diagram



- Capture the Critical elements of the system
- How do you do that?
  - Review P&ID and piping isometrics
  - Talk with operators
  - Walk the system down (nice to have a P&ID when you do)
  - Take notes !!





### Simple Drawing with Elevations

Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY .... POWER TOMORROW



### **Overall System Layout**





With the second second



### Collection of System Data



- Data gathered using installed plant instrumentation or portable instruments:
  - Motor power or voltage and current
  - Pump flow rate, suction and discharge pressure
  - Flow rates to system loads
  - Pressures at system loads
  - Fluid temperature, density, viscosity
- Additional System Data:
  - Static head
  - Operating hours
  - Pump control method:
    - VSD, Throttled valve
    - By-pass or recirculation, etc







- Determine if data collected is a **representative** snapshot or if the system needs to be evaluated over a longer period of time or if historical process control data is available.
- Pressure measurements should be taken with calibrated, reliable gauges or transmitters.
- Flow measurements should be taken with properly installed, calibrated meters.
  - If using portable flow meters, confirm measurement at alternative locations
  - May use dP across a component and component curve





### **Data Collection Tips**



#### • Motor input power

- Preferably measure power directly with a power meter
- MEASUR can calculate motor input power using measured voltage and current, and estimating the power factor

#### Cross-validation

- Flow rate, pressure, and power measurements may not be available but can be determined using cross-validation
- Use dP pump differential pressure (total head) and pump curve to estimate flow rate
- Use motor input power and efficiency to calculate shaft power, then use pump curve to estimate flow rate
- Use valve position, flow rate, and  $K_v$  data to estimate dP
- Measure drawdown and fill times to estimate flow rate



### Primary parameters of interest



- Flow rate
- Pressure
- Elevations
- Electric power





Egyptian program for promoting mustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

## Volumetric Flow Rate Measurement





### Flow rate, velocity, and area relations



304



Volumetric flow rate = Velocity x Area Q = v x A



A practical principle for filled liquid piping systems: The flow rate at two points at any particular point in time will be equal



### More on flow rate, continuity









### Velocities vary with diameter





If  $d_1$  is 2 x  $d_2$ , then  $V_2$  will be 4 x  $V_1$ 





### Flow meter considerations



- Proper flow profile and installation
- Range
- Calibration
- Wear
- Corrosion, scale, foreign material
- Sensing line issues (similar to pressure)





# The flow regime and upstream geometry affect the velocity profile





# Permanently-installed ultrasonic flow meter in wastewater plant (single path)









This system measures the average velocity across the full pipe diameter; the transducers are in contact with the fluid.





### Clamp-on portable ultrasonic



### Ductile and cast iron (top), carbon and stainless steel pipe (bottom)













### Portable Ultrasonic Flow Meter







### 2-channel meter



## For less-than-desirable geometric conditions, 2-channel meter provides a consistency check



Note that the most upstream transducer is only about 2.25 pipe diameters downstream of the tee. The pair of ultrasonic units are set up about 90 degrees apart, circumferentially, thus sensing perpendicular velocity profiles.



### Wall thickness



# Wall thickness is a common source of uncertainty or error in all flow measurements





### Problem applications for time of flight ultrasonic meters



- Slurries
- Medium/high density stock
- Aerated fluid
- Considerable scale buildup
- Good quality meters give the user an alert when the meter diagnostics suggest that the data is likely to be erroneous.
- Not all meters fit the "good quality" characterization.



### Single radial point transducers



Single radial point transducers are particularly susceptible to disturbed flow-induced errors



### Bad flow meter installation







#### A Better Configuration (downstream conditions could be improved)







### Full diameter magnetic flow meter

Egyptian program for promoting hustrial Motor Efficiency



shown, was good)



318

### Magnetic flow meter



Three magnetic flow meters used in a slurry application with decent pipe geometry





Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

## **Pressure and Head Measurement**





Pressure



## Pressure is normally measured relative to the local atmospheric condition



The SI-unit for pressure is kPa.

Imperial units are psig and inches of mercury vacuum

### Abolute pressure

بركيز تجديث الصلاء

mine a tax on our



The absolute pressure in the atmosphere is a function of elevation



322

### Gauge pressure



### Gauge pressure is also a function of the gauge elevation



Elevations of transducers in the riser at left (above floor)

1.08 m

gef

www.fheGff

بركيز تجديث الصلاء

0.77 m

0.06 m

Proto by Diagnostic Solutions, Lie

Image: 720 Transfer

Im

Note: Pump was off during this set of measurem ents



### Gauge and Absolute Pressures



- Average sea-level pressure is 101.325 kPa (1013.25 mbar, or hPa) or 760 millimeters (mmHg) that is, the pressure of the air relative to a perfect vacuum
- Gauge pressure measurements are always relative to the ambient atmosphere
- Absolute pressure is an important factor in one pump performance attribute: NPSH





Egyptian program for promoting Industrial Motor Efficiency




325

#### Gauge pressure in pumping systems varies with location and time



### Some practical considerations



- Service environment, history
  - Water hammer
  - Calibration
- Instrument range
  - Accuracy
  - Overpressure capability
- Physical location, setup
  - Process connection point
  - Accounting for sensing element elevation
  - Proper instrument line fill & vent





#### Common pressure transducers



The two most common pressure-measuring devices are the Bourdon tube and diaphragm-based strain gauge transducers









#### Calibration is desirable - but not sufficient





- Picture taken on 10/15/2004; note the calibration sticker was applied only three months before.
- This gauge is actually disconnected and still gives a reading of 70 PSI







Egyptian program for promoting Andustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

## Power Measurements





#### Power Measurements



#### **Power can be measured:**

- Directly
- By measuring Voltage, Amperage and estimating Power Factor
- MEASUR has a built in Power Factor estimator





#### End of Course



Egyptian program for promoting #ndustrial Motor Efficiency SAVE TODAY ... POWER TOMORROW

# Thank you for your participation

Please complete the course evaluation





#### **Contact Details**





Taymour Ibrahim Egypt PMU

t.ibrahim@UNIDO.org



Albert Williams Facilitator

aewenergy@gmail.com



Siraj Williams Facilitator

Siraj@triplepoint.co.za



